Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Тангенциальное и нормальное ускорение




Линейное перемещение, линейная скорость, линейное ускорение.

Перемеще́ние (в кинематике) — изменение местоположения физического тела в пространстве относительно выбранной системы отсчёта. Также перемещением называют вектор, характеризующий это изменение. Обладает свойством аддитивности. Длина отрезка — это модуль перемещения, измеряется в метрах (СИ).

Можно определить перемещение, как изменение радиус-вектора точки:.

Модуль перемещения совпадает с пройденным путём в том и только в том случае, если при движении направление перемещения не изменяется. При этом траекторией будет отрезок прямой. В любом другом случае, например, при криволинейном движении, из неравенства треугольника следует, что путь строго больше.

Вектор D r = rr 0, проведенный из начального положения движущейся точки в положение ее в данный момент времени (приращение радиуса-вектора точки за рассматриваемый промежуток времени), называется перемещением.

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории и модуль перемещения |D r | равен пройденному пути D s.
Линейная скорость тела в механике

Скорость

Для характеристики движения материальной точки вводится векторная величина — скорость, которой определяется как быстрота движения, так и его направ­ление в данный момент времени.

Пусть материальная точка движется по какой-либо криволинейной траектории так, что в момент времени t ей соответствует радиус-вектор r0 (рис. 3). В течение малого промежутка времени D t точка пройдет путь D s и получит элементарное (бесконечно малое) перемещение Dr.

Вектором средней скорости <v> называется отношение приращения Dr радиу­са-вектора точки к промежутку времени D t:

(2.1)

Направление вектора средней скорости совпадает с направлением Dr. При неог­раниченном уменьшении D t средняя скорость стремится к предельному значению, которое называется мгновенной скоростью v:

Мгновенная скорость v, таким образом, есть векторная величина, равная первой производной радиуса-вектора движущейся точки по времени. Так как секущая в пре­деле совпадает с касательной, то вектор скорости v направлен по касательной к траек­тории в сторону движения (рис. 3). По мере уменьшения D t путь D s все больше будет приближаться к |Dr|, поэтому модуль мгновенной скорости

Таким образом, модуль мгновенной скорости равен первой производной пути по времени:

(2.2)

При неравномерном движении — модуль мгновенной скорости с течением времени изменяется. В данном случае пользуются скалярной величиной á v ñ — средней скоро­стью неравномерного движения:

Из рис. 3 вытекает, что á v ñ> |ávñ|, так как D s > |Dr|, и только в случае прямолиней­ного движения

Если выражение d s = v d t (см. формулу (2.2)) проинтегрировать по времени в пре­делах от t до t + D t, то найдем длину пути, пройденного точкой за время D t:

(2.3)

В случае равномерного движения числовое значение мгновенной скорости постоянно; тогда выражение (2.3) примет вид

Длина пути, пройденного точкой за промежуток времени от t 1 до t 2, дается интегралом

Ускорение и его составляющие

В случае неравномерного движения важно знать, как быстро изменяется скорость с течением времени. Физической величиной, характеризующей быстроту изменения скорости по модулю и направлению, является ускорение.

Рассмотрим плоское движение, т.е. движение, при котором все участки траектории точки лежат в одной плоскости. Пусть вектор v задает скорость точки А в момент времени t. За время D t движущаяся точка перешла в положение В и приобрела скорость, отличную от v как по модулю, так и направлению и равную v1 = v + Dv. Перенесем вектор v1 в точку А и найдем Dv (рис. 4).

Средним ускорением неравномерного движения в интервале от t до t + D t называется векторная величина, равная отношению изменения скорости Dv к интервалу вре­мени D t

Мгновенным ускорением а (ускорением) материальной точки в момент време­ни t будет предел среднего ускорения:

Таким образом, ускорение a есть векторная величина, равная первой производной скорости по времени.

Разложим вектор Dv на две составляющие. Для этого из точки А (рис. 4) по направлению скорости v отложим вектор , по модулю равный v1. Очевидно, что вектор , равный , определяет изменение скорости за время D t по моду­лю: . Вторая же составляющая вектора Dv характеризует изменение ско­рости за время D t по направлению.

Тангенциальное и нормальное ускорение.

Тангенциа́льное ускоре́ние — компонента ускорения, направленная по касательной к траектории движения. Совпадает с направлением вектора скорости при ускоренном движении и противоположно направлено при замедленном. Характеризует изменение модуля скорости. Обозначается обычно или (, итд в соответствии с тем, какая буква выбрана для обозначения ускорения вообще в данном тексте).

Иногда под тангенциальным ускорением понимают проекцию вектора тангенциального ускорения — как он определен выше — на единичный вектор касательной к траектории, что совпадает с проекцией (полного) вектора ускорения на единичный вектор касательной то есть соответствующий коэффициент разложения по сопутствующему базису. В этом случае используется не векторное обозначение, а «скалярное» — как обычно для проекции или координаты вектора — .

Величину тангенциального ускорения - в смысле проекции вектора ускорения на единичный касательный вектор траектории - можно выразить так:


где - путевая скорость вдоль траектории, совпадающая с абсолютной величиной мгновенной скорости в данный момент.

 

Если использовать для единичного касательного вектора обозначение , то можно записать тангенциальное ускорение в векторном виде:

 

Вывод

Выражение для тангенциального ускорения можно найти, продифференцировав по времени вектор скорости, представленный в виде через единичный вектор касательной :

 

где первое слагаемое — тангенциальное ускорение, а второе — нормальное ускорение.

 

Здесь использовано обозначение для единичного вектора нормали к траектории и - для текущей длины траектории (); в последнем переходе также использовано очевидное

и, из геометрических соображений,

Центростремительное ускорение(нормальное) — часть полного ускорения точки, обусловленного кривизной траектории и скоростью движения по ней материальной точки. Такое ускорение направлено к центру кривизны траектории, чем и обусловлен термин. Формально и по существу термин центростремительное ускорение в целом совпадает с термином нормальное ускорение, различаясь скорее лишь стилистически (иногда исторически).

Особенно часто о центростремительном ускорении говорят, когда речь идет о равномерном движении по окружности или при движении, более или менее приближенном к этому частному случаю.

Элементарная формула


или

 

где — нормальное (центростремительное) ускорение, — (мгновенная) линейная скорость движения по траектории, — (мгновенная) угловая скорость этого движения относительно центра кривизны траектории, — радиус кривизны траектории в данной точке. (Cвязь между первой формулой и второй очевидна, учитывая).

 

Выражения выше включают абсолютные величины. Их легко записать в векторном виде, домножив на — единичный вектор от центра кривизны траектории к данной ее точки:

 


Эти формулы равно применимы к случаю движения с постоянной (по абсолютной величине) скоростью, так и к произвольному случаю. Однако во втором надо иметь в виду, что центростремительное ускорение не есть полный вектор ускорения, а лишь его составляющая, перпендикулярная траектории (или, что то же, перпендикулярная вектору мгновенной скорости); в полный же вектор ускорения тогда входит еще и тангенциальная составляющая (тангенциальное ускорение) , по направлению совпадающее с касательной к траектории (или, что то же, с мгновенной скоростью).

Вывод

То, что разложение вектора ускорения на компоненты — одну вдоль касательного к траектории вектора (тангенциальное ускорение) и другую ортогональную ему (нормальное ускорение) — может быть удобным и полезным, довольно очевидно само по себе. Это усугубляется тем, что при движении с постоянной по величине скоростью тангенциальная составляющая будет равной нулю, то есть в этом важном частном случае остается только нормальная составляющая. Кроме того, как можно увидеть ниже, каждая из этих составляющих имеет ярко выраженные собственные свойства и структуру, и нормальное ускорение содержит в структуре своей формулы достаточно важное и нетривиальное геометрическое наполнение. Не говоря уже о важном частном случае движения по окружности (который, к тому же, практически без изменения может быть обобщен и на общий случай).

Формальный вывод

Разложение ускорения на тангенциальную и нормальную компоненты (вторая из которых и есть центростремительное или нормальное ускорение) можно найти, продифференцировав по времени вектор скорости, представленнный в виде через единичный вектор касательной .

Где первое слагаемое — тангенциальное ускорение, а второе — нормальное ускорение.

Здесь использовано обозначение для единичного вектора нормали к траектории и — для

текущей длины траектории (); в последнем переходе также использовано очевидное

.

Далее можно просто формально назвать член

 

— нормальным (центростремительным) ускорением. При этом его смысл, смысл входящих в него объектов, а также доказательство того факта, что он действительно ортогонален касательному вектору (то есть что — действительно вектор нормали) — будет следовать из геометрических соображений (впрочем, то, что производная любого вектора постоянной длины по времени перпендикулярна самому этому вектору, — достаточно простой факт; в данном случае мы применяем это утверждение для).





Поделиться с друзьями:


Дата добавления: 2016-09-03; Мы поможем в написании ваших работ!; просмотров: 10610 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наглость – это ругаться с преподавателем по поводу четверки, хотя перед экзаменом уверен, что не знаешь даже на два. © Неизвестно
==> читать все изречения...

2648 - | 2219 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.