Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Неравенства с двумя переменными и их системы




 

Неравенством с двумя переменными х и у называется неравенство вида

(или знак ),

где – некоторое выражение с данными переменными.

Решением неравенства с двумя переменными называют упорядоченную пару чисел при которой это неравенство обращается в верное числовое неравенство.

Решить неравенство – значит найти множество всех его решений. Решением неравенства с двумя переменными является некоторое множество точек координатной плоскости.

Основным методом решений данных неравенств является графический. Он заключается в том, что строят линии границ (если неравенство строгое, линии строят пунктиром). Уравнение границы получают, если в заданном неравенстве заменяют знак неравенства на знак равенства. Все линии в совокупности разбивают координатную плоскость на части. Искомое множество точек, которое соответствует заданному неравенству или системе неравенств, можно определить, если взять контрольную точку внутри каждой области.

Системы, содержащие неравенства с двумя переменными, вида

называются системами неравенств с двумя переменными. Решением данных систем является пересечение решений всех неравенств, входящих в систему.

Совокупность неравенств с двумя переменными имеет вид

Решением совокупности является объединение всех решений неравенств.

 

Пример 1. Решить систему

Решение. Построим в системе Оху соответствующие линии (рис. 4.24):

 
 

 

 


Рис. 4.24

 

Уравнение задает окружность с центром в точке О ¢(0; 1) и R = 2.

Уравнение определяет параболу с вершиной в точке О (0; 0).

Найдем решения каждого из неравенств, входящих в систему. Первому неравенству соответствует область внутри окружности и сама окружность (в справедливости этого убеждаемся, если подставим в неравенство координаты любой точки из этой области). Второму неравенству соответствует область, расположенная под параболой.

Решение системы – пересечение двух указанных областей (на рис. 4.24 показано наложением двух штриховок).

 

Задания

 

I уровень

1.1. Решите графически:

1) 2)

3) 4)

5) 6)

7) 8)

 

II уровень

2.1. Решите графически:

1) 2) 3)

 

2.2. Найдите количество целочисленных решений системы:

1) 2) 3)

 

2.3. Найдите все целочисленные решения системы:

1) 2) 3)

 

2.4. Решите неравенство. В ответе укажите количество решений с двумя целочисленными координатами:

III уровень

3.1. Найдите количество целочисленных решений системы:

1) 2)

 

3.2. Найдите все значения параметра а, при каждом из которых система имеет решение:

1) 2)

 

3.3. Определите, при каких значениях а неравенство имеет положительные решения.

 

3.4. Определите, при каких значениях а система имеет единственное решение:

1) 2) 3)

 

3.5. В зависимости от значения а определите число решений системы

 

3.6. Решите графически:

1) 2)





Поделиться с друзьями:


Дата добавления: 2016-09-03; Мы поможем в написании ваших работ!; просмотров: 770 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Человек, которым вам суждено стать – это только тот человек, которым вы сами решите стать. © Ральф Уолдо Эмерсон
==> читать все изречения...

2276 - | 2132 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.