Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Условие -непротиворечивости




Наиболее известная форма теоремы Гёделя гласит, что фор­мальная система F (достаточно обширная) не может быть од­новременно полной и непротиворечивой. Это не совсем та зна­менитая «теорема о неполноте», которую Гёдель первоначаль­но представил на конференции в Кенигсберге (см. §§2.1 и 2.7), а ее несколько более сильный вариант, который был позднее получен американским логиком Дж. Баркли Россером(1936). По своей сути, первоначальный вариант теоремы Гёделя оказыва­ется эквивалентен утверждению, что система F не может быть одновременно полной и -непротиворечивой. Условие же - непротиворечивости несколько строже, нежели условие непроти­воречивости обыкновенной. Для объяснения его смысла нам по­требуется ввести некоторые новые обозначения. В систему обо­значений формальной системы F необходимо включить символы некоторых логических операций. Нам, в частности, потребуется символ, выражающий отрицание («не»); можно выбрать для этого символ «~». Таким образом, если Q есть некое высказы­вание, формулируемое в рамках F, то последовательность сим­волов ~ Q означает «не Q». Нужен также символ, означающий «для всех [натуральных чисел]» и называемый квантор общно­сти', он имеет вид «V». Если Р (п) есть некое высказывание, за­висящее от натурального числа п (т. е. Р представляет собой так называемую пропозициональную функцию), то строка симво­лов Vn (п)] означает «для всех натуральных чисел п высказы­вание Р (п) справедливо». Например, если высказывание Р (п) имеет вид «число п можно выразить в виде суммы квадратов трех чисел», то запись Vn [Р (п)] означает «любое натуральное число является суммой квадратов трех чисел», — что, вообще говоря, ложно (хотя, если мы заменим «трех» на «четырех», то это же утверждение станет истинным). Такие символы можно записывать в самых различных сочетаниях; в частности, строка символов

выражает отрицание того, что высказывание Р (п) справедливо для всех натуральных чисел п.

Условие же -непротиворечивости гласит, что если выска­зывание можно доказать с помощью методов фор­мальной системы F, то это еще не означает, что в рамках этой самой системы непременно доказуемы все утверждения

Р(0),Р(1),Р(2),Р(3),Р(4),....

Отсюда следует, что если формальная система F не является - непротиворечивой, мы оказываемся в аномальной ситуации, ко­гда для некоторого Р оказывается доказуемой истинность всех высказываний Р(0), Р(1), Р(2), Р(3), Р(4),...; и одновре­менно с этим можно доказать и то, что не все эти высказывания истинны! Безусловно, ни одна заслуживающая доверия формаль­ная система подобного безобразия допустить не может. Поэтому если система F является обоснованной, то она непременно будет и -непротиворечивой.

В дальнейшем утверждения «формальная система F явля­ется непротиворечивой» и «формальная система F является - непротиворечивой» я буду обозначать, соответственно, символа­ми «G (F)» и «П (F)». В сущности (если полагать систему F до­статочно обширной), сами утверждения (? (F) и П (F) формулиру­ются как операции этой системы. Согласно знаменитой теореме Гёделя о неполноте, утверждение G (F) не является теоремой системы F (т. е. его нельзя доказать с помощью процедур, допу­стимых в рамках системы F), не является теоремой и утвержде­ние fi (F) — если, разумеется, система F действительно непро­тиворечива. Несколько более строгий вариант теоремы Гёделя, сформулированный позднее Россером, гласит, что если система F непротиворечива, то утверждение ~ G (F) также не является те­оремой этой системы. В оставшейся части этой главы я буду фор­мулировать свои доводы не столько исходя из утверждения fi (F), сколько на основе более привычного нам G (F), хотя для большей части наших рассуждений в равной степени сгодится любое из них. (В некоторых наиболее явных аргументах главы 3 я буду иногда обозначать через «G(F)» конкретное утверждение «вы­числение Ck (k) не завершается» (см. §2.5); надеюсь, никто не сочтет это слишком большой вольностью с моей стороны.)

В большей части предлагаемых рассуждений я не стану проводить четкую границу между непротиворечивостью и - непротиворечивостью, однако тот вариант теоремы Гёделя, что представлен в § 2.5, по сути, гласит, что если формальная систе­ма F непротиворечива, то она не может быть полной, так как не может включать в себя в качестве теоремы утверждение G(F). Здесь я всего этого демонстрировать не буду (интересующиеся же могут обратиться к [222]). Вообще говоря, для того чтобы эту форму гёделевского доказательства можно было свести к дока­зательству в моей формулировке, система F должна содержать в себе нечто большее, нежели просто «арифметику и обыкно­венную логику». Необходимо, чтобы система F была обширной настолько, чтобы включать в себя действия любой машины Тью­ринга. Иначе говоря, среди утверждений, корректно формулиру­емых с помощью символов системы F, должны присутствовать утверждения типа: «Такая-то машина Тьюринга, оперируя над натуральным числом п, дает на выходе натуральное число р». Более того, имеется теорема (см. [222], главы 11 и 13), согласно которой так оно само собой и получается, если, помимо обыч­ных арифметических операций, система F содержит следующую операцию (так называемую /u-операцию, или операцию мини­мизации): «найти наименьшее натуральное число, обладающее таким-то арифметическим свойством». Вспомним, что в нашем первом вычислительном примере, (А), предложенная процедура действительно позволяла отыскать наименьшее число, не явля­ющееся суммой трех квадратов. То есть, вообще говоря, право на подобные вещи за вычислительными процедурами следует сохра­нить. С другой стороны, именно благодаря этой их особенности мы и сталкиваемся с вычислениями, которые принципиально не завершаются, — например, вычисление (В), где мы пытаемся отыскать наименьшее число, не являющееся суммой четырех квадратов, а такого числа в природе не существует.





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 336 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

В моем словаре нет слова «невозможно». © Наполеон Бонапарт
==> читать все изречения...

2213 - | 2174 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.