Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Какое отношение имеет теорема Гёделя к «бытовым» действиям?




Допустим однако, что мы все уже согласны с тем, что при формировании осознанных математических суждений и получе­нии осознанных же математических решений в нашем мозге дей­ствительно происходит что-то невычислимое. Каким образом это поможет нам понять причины ограниченных способностей робо­тов, которые, как я упоминал ранее, значительно хуже справ­ляются с элементарными, «бытовыми», действиями, нежели со сложными задачами, для выполнения которых требуются вы­сококвалифицированные специалисты-люди? На первый взгляд, создается впечатление, что мои выводы в корне противополож­ны тем, к которым придет всякий здравомыслящий человек, ис­ходя из известных ограничений искусственного интеллекта — по крайней мере, сегодняшних ограничений. Ибо многим почему-то кажется, что я утверждаю, будто невычислимое поведение долж­но быть связано скорее с пониманием крайне сложных областей математики, а никак не с обыденным, бытовым поведением. Это не так. Я утверждаю лишь, что пониманию сопутствуют невы­числимые процессы одинаковой природы, вне зависимости отто­го, идет ли речь о подлинно математическом восприятии, скажем, бесконечного множества натуральных чисел или всего лишь об осознании того факта, что предметом удлиненной формы можно подпереть открытое окно, о понимании того, какие именно ма­нипуляции следует произвести с куском веревки для того, чтобы привязать или, напротив, отвязать уже привязанное животное, о постижении смысла слов «счастье», «битва» или «завтра» и, наконец, о логическом умозаключении относительно вероятного местонахождения правой ноги Авраама Линкольна, если извест­но, что левая его нога пребывает в настоящий момент в Вашинг­тоне, — я привел здесь некоторые из примеров, оказавшихся на удивление мучительными для одной реально существующей ИИ-системы! Такого рода невычислимые процессы лежат в основе всякой деятельности, результатом которой является непо­средственное осознание чего-либо. Именно это осознание поз­воляет нам визуализировать геометрию движения деревянного бруска, топологические свойства куска веревки или же «связ­ность» Авраама Линкольна. Оно также позволяет нам получить до некоторой степени прямой доступ к опыту другого человека, с помощью чего мы можем «узнать», что этот другой, скорее все­го, подразумевает под такими словами, как «счастье», «битва» и «завтра», несмотря даже на то, что предлагаемые в процессе общения объяснения зачастую оказываются недостаточно аде­кватными. Передать «смысл» слов от человека к человеку все же возможно, однако не с помощью объяснений различной сте­пени адекватности, а лишь благодаря тому, что собеседник уже, как правило, имеет в сознании некий общий образ возможного смысла этих слов (т. е. «осознает» их), так что даже очень неаде­кватных объяснений обычно бывает вполне достаточно для того, чтобы человек смог «уловить» верный смысл. Именно наличие такого общего «осознания» делает возможным общение между людьми. И именно этот факт ставит неразумного, управляемого компьютером робота в крайне невыгодное положение. (В самом деле, уже самый смысл понятия «смысл слова» изначально вос­принимается нами как нечто само собой разумеющееся, и поэто му совершенно непонятно, каким образом такое понятие можно сколько-нибудь адекватно описать нашему неразумному роботу.) Смысл можно передать лишь от человека к человеку, потому что все люди имеют схожий жизненный опыт или аналогичное вну­треннее ощущение «природы вещей». Можно представить «жиз­ненный опыт» в виде своеобразного хранилища, в которое скла­дывается память обо всем, что происходит с человеком в течение жизни, и предположить, что нашего робота не так уж и сложно таким хранилищем оснастить. Однако я утверждаю, что это не так; ключевым моментом здесь является то, что рассматриваемый субъект, будь то человек или робот, должен свой жизненный опыт осознавать.

Что же заставляет меня утверждать, будто упомянутое осо­знание, что бы оно из себя ни представляло, должно быть невы­числимым — иначе говоря, таким, что его не сможет ни достичь, ни хотя бы воспроизвести ни один робот, управляемый ком­пьютером, построенным исключительно на базе стандартных ло­гических концепций машины Тьюринга (или эквивалентной ей) нисходящего либо восходящего типа? Именно здесь и играют решающую роль гёделевские соображения. Вряд ли мы в на­стоящее время можем многое сказать об «осознании», напри­мер, красного цвета; а вот относительно осознания бесконечно­сти множества натуральных чисел кое-что определенное нам таки известно. Это такое «осознание», благодаря которому ребенок «знает», что означают слова «ноль», «один», «два», «три», «че­тыре» и т. д. и что следует понимать под бесконечностью этой по­следовательности, хотя объяснения ему были даны до нелепости ограниченные и, на первый взгляд, к делу почти не относящиеся, на примере нескольких бананов и апельсинов. Из таких частных примеров ребенок и в самом деле способен вывести абстрактное понятие числа «три». Более того, он также оказывается в состоя­нии понять, что это понятие является лишь звеном в бесконечной цепочке похожих понятий («четыре», «пять», «шесть» и т.д.). В некотором платоническом смысле ребенок изначально «знает», что такое натуральные числа.

Возможно, кто-то усмотрит здесь некий налет мистики, од­нако в действительности мистика здесь не при чем. Для пони­мания последующих рассуждений крайне важно отличать такое платоническое знание от мистицизма. Понятия, «известные» нам в платоническом смысле, суть вещи для нас «очевидные»: вещи, которые сводятся к воспринятому когда-то «здравому смыс­лу», — при этом мы не можем охарактеризовать эти понятия во всей их полноте посредством вычислительных правил. Дей­ствительно — и это станет ясно из дальнейших рассуждений, связанных с доказательством Гёделя, — не существует способа целиком и полностью охарактеризовать свойства натуральных чисел на основе лишь таких правил. А как же тогда описания числа через яблоки или бананы дают ребенку понять, что означа­ют слова «три дня», и откуда ему знать, что смысл абстрактного понятия числа «три» здесь совершенно тот же, что и в словах «три апельсина»? Разумеется, такое понимание иногда приходит к ребенку далеко не сразу, и на первых порах он, бывает, ошиба­ется, однако суть не в этом. Суть в том, что подобное осознание вообще возможно. Абстрактное понятие числа «три», равно как и представление о том, что существует бесконечная последова­тельность аналогичных понятий — собственно последователь­ность натуральных чисел, — и в самом деле вполне доступно человеческому пониманию, однако, повторяю, лишь через осо­знание.

Я утверждаю, что точно так же мы не пользуемся вычис­лительными правилами при визуализации движений деревянного бруска, куска веревки или Авраама Линкольна. Вообще говоря, существуют весьма эффективные компьютерные модели движе­ния твердого тела — например, деревянного бруска. С их по­мощью можно осуществлять моделирование такого движения с точностью и достоверностью, обычно недостижимыми при непо­средственной визуализации. Аналогично, вычислительными ме­тодами можно моделировать и движение веревки или струны, хо­тя такое моделирование почему-то оказывается несколько более сложным по сравнению с моделированием движения твердого те­ла. (Отчасти это связано с тем, что для описания положения «ма­тематической струны» необходимо определить бесконечно мно­го параметров, тогда как положение твердого тела описывается всего шестью.) Существуют компьютерные алгоритмы для опре­деления «заузленности» веревки, однако они в корне отличаются от алгоритмов, описывающих движение твердого тела (и не очень эффективны в вычислительном отношении). Любое воспроизве­дение с помощью компьютера внешнего облика Авраама Лин­кольна, безусловно, представляет собой еще более сложную за­дачу. Во всяком случае, дело не в том, что визуализация чего-либо человеком «лучше» или «хуже» компьютерного моделирования, просто это вещи совершенно различные.

Важный момент, как мне кажется, заключается в том, что визуализация содержит некий элемент оценки того, что человек видит, то есть сопровождается пониманием. Чтобы проиллю­стрировать, что я имею в виду, давайте рассмотрим одно эле­ментарное арифметическое правило, а именно: для любых двух натуральных чисел (т.е. неотрицательных целых чисел 0, 1, 2, 3, 4,...) а и b справедливо следующее равенство:

Следует пояснить, что это высказывание не является пустым, хотя части уравнения и имеют различный смысл. Запись слева означает совокупность а групп по b объектов в каждой; справа — b групп по а объектов в каждой. В частном случае, например, при запись можно представить следующим рядом точек:

в то время как для имеем

Общее число точек в каждом случае одинаково, следовательно, справедливо равенство

В истинности этого равенства можно удостовериться, пред­ставив зрительно матрицу

Читая матрицу по строкам, можно сказать, что в ней три строки, каждая из которых содержит по пять точек, что соответствует числуv . Однако если эту же матрицу прочесть по столбцам, то получится пять столбцов по три точки в каждом, что соответству­ет числу . Равенство этих чисел очевидно, поскольку речь в каждом случае идет об одной и той же прямоугольной матрице, просто мы ее по-разному читаем. (Есть и альтернативный вари­ант: мы можем мысленно повернуть изображение на прямой угол и убедиться в том, что матрица, соответствующая числу , содержит то же количество элементов, что и матрица, соответ­ствующая числу .)

Важный момент описанной визуализации заключается в том, что она непосредственно дает нам нечто гораздо более общее, чем просто частное численное равенство . Иными словами, в конкретных числовых значениях , участвующих в данной процедуре, нет ничего особенного. Полученное правило будет применимо, даже если, скажем, , а b = 50 000123 555, и мы с уверенностью можем утверждать, что несмотря на то, что у нас нет ни малейшей возможности сколько-нибудь точно представить себе визуально прямоугольную мат­рицу такого размера (да и ни один современный компьютер не сможет перечислить все ее элементы). Мы вполне можем заклю­чить, что вышеприведенное равенство должно быть истинным — или что истинным должно быть равенство общего вида — на основании, в сущности, той же самой визуализации, которую мы применяли для конкретного случая Нужно просто несколько «размыть» мысленно действительное количество строк и столбцов рассматриваемой матрицы, и равен­ство становится очевидным.

Я вовсе не хочу сказать, что все математические отношения можно с помощью верной визуализации непосредственно пости­гать как «очевидные», или же что их просто можно в любом случае постичь каким-то иным способом, основанным непосред­ственно на интуиции. Это далеко не так. Для уверенного понима­ния некоторых математических отношений необходимо строить весьма длинные цепочки умозаключений. Цель математического доказательства, по сути дела, в этом и заключается — мы стро­им цепочки умозаключений таким образом, чтобы на каждом этапе получать утверждение, допускающее «очевидное» пони­мание. Как следствие, конечной точкой умозаключения должно оказаться суждение, которое необходимо принимать как истин­ное, пусть даже оно само по себе вовсе и не очевидно.

Кое-кто, наверное, уже вообразил, что в таком случае можно раз и навсегда составить список всех «возможных» этапов умо­заключений и тогда всякое доказательство можно будет свести к вычислению, т. е. к простым механическим манипуляциям полу­ченными очевидными этапами. Доказательство Гёделя как раз и демонстрирует невозможность реализации такой процеду­ры. Нельзя совершенно избавиться от необходимости в новых «очевидно понимаемых» отношениях. Таким образом, матема­тическое понимание никоим образом не сводится к бездумному вычислению.





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 428 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2205 - | 2093 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.