Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Почему именно математическое понимание?




Все эти благоглупости, конечно, очень (или не очень) заме­чательны — так, несомненно, уже ворчат иные читатели. Однако какое отношение имеют все эти замысловатые проблемы мате­матики и философии математики к большинству вопросов, непо­средственно касающихся, например, искусственного интеллекта? В самом деле, многие философы и поборники ИИ придержи­ваются достаточно разумного мнения, суть которого сводится к тому, что теорема Гёделя, безусловно, имеет огромное значение в своем исходном контексте, т. е. в области математической логики, однако в отношении ИИ или философии разума актуальность ее, в лучшем случае, весьма и весьма ограничена. В конце концов, не так уж и часто мыслительная деятельность человека оказывается направлена на решение вопросов, относящихся к первоначаль­ной области применимости рассуждений Гёделя — аксиоматическим основам математики. На это возражение я бы ответил так: но ведь практически всегда мыслительная деятельность человека требует участия сознания и понимания. Рассуждение же Гёделя я использую для того, чтобы показать, что человеческое понимание нельзя свести к алгоритмическим процессам. Если мне удастся показать справедливость этого утверждения в каком-либо кон­кретном контексте, то этого будет вполне достаточно. Продемон­стрировав, что понимание каких-то математических процедур не поддается описанию с помощью вычислительных методов, мы тем самым докажем, что в нашем разуме происходит-таки что-то такое, что невозможно вычислить. А если так, то напрашива­ется вполне естественный вывод: невычислительная активность должна быть присуща и многим другим аспектам мыслительной деятельности. Вот и все, путь свободен!

Может показаться, что представленное в главе 2 математи­ческое доказательство, устанавливающее необходимую нам фор­му теоремы Гёделя, не имеет прямого отношения к большин­ству аспектов сознания. В самом деле: что общего может быть у демонстрации невычислимости феномена понимания на примере определенных типов математических суждений с восприятием, например, красного цвета? Да и в большинстве других аспектов сознания математические соображения, похоже, не играют явно выраженной роли. К примеру, даже математики, как правило, не думают о математике, когда спят и видят сны! Судя по всему, сны видят и собаки, причем есть основания полагать, что они, до некоторой степени, осознают, что видят сон; и я склонен думать, что они наверняка осознают и происходящее с ними во время бодрствования. Однако собаки математикой не занимаются. Бес­спорно, математические размышления — далеко не единствен­ная деятельность живого организма, требующая участия созна­ния. Скажем больше: эта деятельность в высшей степени спе­циализирована и характерна лишь для человека'. (И даже более того, я встречал циников, которые уверяли меня, что упомянутая деятельность характерна лишь для определенной, чрезвычайно редкой разновидности людей.) Феномен же сознания наблюдает­ся повсеместно и присущ мыслительной деятельности как чело­века, так и большинства нечеловеческих форм жизни; сознани­ем, безусловно, в равной степени обладают и люди, далекие от математики, и математики-профессионалы, причем даже тогда, когда они математикой не занимаются (т. е. большую часть своей жизни). Математическое мышление составляет очень и очень ма­лую область сознательной деятельности вообще, практикует его очень и очень незначительное меньшинство обладающих созна­нием существ, да и то на протяжении очень и очень ограниченной части их сознательной жизни.

Почему же в таком случае я решил рассмотреть вопрос со­знания прежде всего в математическом контексте? Причина за­ключается в том, что только в математических рамках мы мо­жем рассчитывать на возможность хоть сколько-нибудь строгой демонстрации непременной невычислимости, по крайней мере, некоторой части сознательной деятельности. Вопрос вычисли­мости по самой своей природе является, безусловно, матема­тическим. Нельзя ожидать, что нам удастся дать хоть какое-то «доказательство» невычислимости того или иного процесса, не обратившись при этом к математике. Я хочу убедить читателя в том, что все, что мы делаем нашим мозгом или разумом в процессе понимания математического суждения, существенно отличается от того, чего мы можем добиться от какого угодно компьютера; если мне это удастся, то читателю будет намного легче оценить роль невычислительных процессов в сознательном мышлении вообще.

А разве не очевидно, возразят мне, что восприятие того же красного цвета никак не может быть вызвано просто выполне­нием какого бы то ни было вычисления. К чему вообще утру­ждать себя какими-то ненужными математическими демонстра­циями, когда и без того совершенно ясно, что — т. е. субъективные ощущения — никак не связаны с вычислениями? Один из ответов заключается в том, что такое доказательство от «очевидного» (как бы благожелательно я ни относился к подоб­ному способу доказательства) применимо только к пассивным аспектам сознания. Как и китайскую комнату Серла, его можно представить в качестве аргумента против точки зрения , а вот между разницы для него не существует.

Более того, мне представляется крайне уместным побить функционалистов вместе с их вычислительной моделью (т. е. точ­кой зрения ), так сказать, на их собственном поле; ведь это именно функционалисты настаивают на том, что все qualia на самом деле должны быть так или иначе обусловлены баналь­ным выполнением соответствующих вычислений, невзирая на то, сколь невероятной такая картина может показаться на первый взгляд. Ибо, аргументируют они, что же еще можем мы эффек­тивно делать своим мозгом, как не выполнять те или иные вы­числения? Для чего вообще нужен мозг, если не в качестве свое­образной системы управления вычислениями — да, чрезвычайно сложными, но все же вычислениями? Какие бы «ощущения осо­знания» ни пробуждались в нас в результате той или иной функ­циональной активности мозга, эти ощущения, согласно функци-оналистской модели, непременно являются результатом некото­рой вычислительной процедуры. Функционалисты любят упре­кать тех, кто не признает за вычислительной моделью способ­ности объяснить любые проявления активности мозга, включая и сознание, в склонности к мистицизму. (Надо понимать так, что единственной альтернативой точки зрения .)

Во второй части книги я намерен привести несколько частных предположений относительно того, что еще может вполне эф­фективно делать мозг, допускающий научное описание. Не стану отрицать, некоторые «конструктивные» моменты моего доказа­тельства являются чисто умозрительными. И все же я полагаю, что мои доводы в пользу невычислимости хотя бы некоторых мыслительных процессов весьма убедительны; а для того, чтобы эта убедительность переросла в неотразимость, их следует при­менить к математическому мышлению.





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 392 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2249 - | 2138 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.