Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Доказательство на основании теоремы




Гёделя

Как можем мы быть уверены в том, что вышеописанное по­нимание не может, в сущности, быть сведено к набору вычис­лительных правил? Несколько позже (в главах 2 и 3) я приведу некоторые очень серьезные доводы в пользу того, что проявления

понимания (по крайней мере, определенных его видов) невозмож­но достоверно моделировать посредством каких угодно вычис­лений — ни нисходящего, ни восходящего типа, ни любой из их комбинаций. Таким образом, за реализацию присущей человеку способности к «пониманию» должна отвечать какая-то невычис­лительная деятельность мозга или разума. Напомним, что терми­ном «невычислительный» в данном контексте мы характеризуем феномен, который невозможно эффективно мо­делировать с помощью какого угодно компьютера, основанного на логических принципах, общих для всех современных элек­тронных или механических вычислительных устройств. При этом термин «невычислительная активность» вовсе не предполагает невозможности описать такую активность научными и, в част­ности, математическими методами. Он предполагает лишь то, что точки зрения оказываются не в состоянии объяснить, каким именно образом мы выполняем все те действия, которые представляют собой результат сознательной мыслительной дея­тельности.

Существует, по меньшей мере, логическая возможность то­го, что обладающий сознанием мозг (или сознательный разум) может функционировать в соответствии с такими невычислитель­ными законами . Однако так ли это? Представленные в следующей главе рассуждения содержат, как мне кажет­ся, весьма четкое доказательство наличия в нашем сознатель­ном мышлении невычислительной составляющей. Основаны эти рассуждения на знаменитой и мощной теореме математической логики, сформулированной великим логиком, чехом по происхо­ждению, Куртом Гёделем. Для моих целей будет вполне доста­точно существенно упрощенного варианта этой теоремы, который не потребует от читателя слишком обширных познаний в мате­матике (что касается математики, то я также позаимствую кое-что из одной важной идеи, высказанной несколько позднее Ала­ном Тьюрингом). Любой достаточно серьезно настроенный чита­тель без труда разберется в моих рассуждениях. Доказательства гёделевского типа, да еще и примененные в подобном контек­сте, подвергаются время от времени решительным нападкам. Вследствие этого у некоторых читателей может сложиться впе­чатление, что мое основанное на теореме Гёделя доказательство было полностью опровергнуто. Должен заметить, что это дале­ко не так. За прошедшие годы действительно выдвигалось множество контраргументов. Мишенью для многих из них послу­жило одно из самых первых таких доказательств (направленное в поддержку ментализма и против физикализма), предложенное оксфордским философом Джоном Лукасом [245]. Опираясь на результаты теоремы Гёделя, Лукас доказывал, что мыслительные процессы невозможно воспроизвести вычислительными метода­ми. (Подобные соображения выдвигались и ранее; см., напри­мер, [270].) Мое доказательство, пусть и построенное на том же фундаменте, выдержано все же в несколько ином духе, нежели доказательство Лукаса; кроме того, в число моих задач не входи­ла непременная поддержка ментализма. Я думаю, что моя форму­лировка способна лучше противостоять различным критическим замечаниям, выдвинутым в свое время против доказательства Лукаса, и во многих отношениях выявить их несостоятельность. Ниже (в главах 2 и 3) мы подробно рассмотрим все контр­аргументы, которые когда-либо попадались мне на глаза. На­деюсь, что мои сопутствующие комментарии не только помогут прояснить некоторые, похоже, широко распространившиеся за­блуждения относительно смысла доказательства Гёделя, но и до­полнят, по-видимому, неудовлетворительно краткое рассмотре­ние этого вопроса, предпринятое в НРК. Я намерен показать, что большая часть этих контраргументов произрастает, в сущности, из банальных недоразумений, тогда как остальные, основанные на более или менее осмысленных и требующих детального рас­смотрения возражениях, представляют собой, в лучшем случае, не более чем возможные «лазейки» в духе взглядов при этом они не дают — в чем у нас еще будет возможность убедить­ся — сколько-нибудь правдоподобного объяснения действи­тельным последствиям наличия у нас способности «понимать», да и в любом случае эти лазейки не представляют особой ценно­сти для развития идеи ИИ. Так что тем, кто по-прежнему полага­ет, что все внешние проявления процессов сознательного мышле­ния можно адекватно воспроизвести вычислительными метода­ми, в рамках положений , я могу лишь порекомендовать повнимательнее следить за предлагаемой ниже аргументацией.

Платонизм или мистицизм?

Критики, впрочем, могут возразить, что отдельные выводы в рамках этого доказательства Гёделя следует рассматривать не иначе как «мистические», поскольку упомянутое доказательство, судя по всему, вынуждает нас принять либо точку зрения , ли­бо точку зрения ; подобный взгляд, разумеется, не более при­емлем, нежели любая из вышеупомянутых лазеек, полученных из теоремы Гёделя. Что касается , то здесь я, вообще гово­ря, полностью с критиками согласен. Мои собственные причины неприятия — точки зрения, настаивающей на полном бессилии науки перед тайною разума, — проистекают из осознания того факта, что только благодаря применению научных и, в частности, математических методов был достигнут хоть какой-то реальный прогресс в понимании происходящих в окружающем нас мире процессов. Более того, если мы и располагаем какими-то досто­верными сведениями о разуме, то только о том разуме, который тесно связан с конкретным физическим объектом — мозгом, — причем различным состояниям разума четко соответствуют раз­личные физические состояния мозга. По всей видимости, с теми или иными специфическими типами физической активности мозга можно ассоциировать и психические состояния сознания. Если бы не таинственные аспекты сознания, связанные с формиро­ванием «осознания» и, быть может, с проявлениями «свободы воли», которые пока что не поддаются физическому описанию, нам бы и в голову не пришло, что для объяснения разума, являю­щегося по всем признакам продуктом протекающих внутри мозга физических процессов, стандартных научных методов может и не хватить.

С другой стороны, следует понимать, что наука (и, в част­ности, математика) и сама по себе являет нам мир, исполненный тайн. Чем глубже мы проникаем в процессе научного познания в суть вещей, тем более фундаментальные тайны открываются нашему взору. Быть может, стоит в этой связи упомянуть и о том, что физики, более непосредственно знакомые с грловоломной и непостижимой манерой, в какой реально проявляет себя мате­рия, склонны видеть мир в менее классически механистическом свете, нежели биологи. В главе 5 мы поговорим о некоторых наиболее таинственных аспектах квантового поведения, обнару­женных относительно недавно. Возможно, для полного «охва­та» тайны разума нам придется несколько расширить границы того, что мы в настоящее время называем наукой, однако я не вижу причин напрочь отказываться от тех методов, которые так замечательно служили нам до сих пор. Таким образом, если гёделевские соображения подталкивают нас к принятию точки зрения в том или ином ее виде (а я полагаю, что так оно и есть), то нам поневоле придется принять и некоторые другие ее следствия. Иными словами, следуя этим путем, мы приходим, ни много ни мало, к объективному идеализму по Платону. Соглас­но учению Платона, математические концепции и математические истины существуют в их собственном, вполне реальном мире, в котором отсутствует течение времени и который не имеет физиче­ского местонахождения. Мир Платона — это идеальный мир со­вершенных форм, отличный от физического мира, но являющийся основой для его понимания. Он, кроме того, никак не связан с нашими несовершенными мысленными построениями, однако че­ловеческий разум способен получить в некотором смысле непо­средственный доступ в это платоново царство благодаря способ­ности «осознавать» математические формы и рассуждать о них. Нашему «платоническому» восприятию, как вскоре выяснится, может иногда поспособствовать вычисление, однако в общем это восприятие вычислением не ограничено. Согласно такому плато­ническому подходу, именно способность «осознавать» математи­ческие концепции дает разуму мощь, далеко превосходящую все, чего можно добиться от устройства, работа которого основыва­ется исключительно на вычислении.





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 432 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

80% успеха - это появиться в нужном месте в нужное время. © Вуди Аллен
==> читать все изречения...

2292 - | 2142 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.