Порядковое условие является необходимым, но недостаточным условием идентификации. Существует также достаточное условие.
Уравнение идентифицируемо, если по отсутствующим в нем переменным (эндогенным и экзогенным) можно из коэффициентов при них в других уравнениях системы получить матрицу, определитель которой неравен 0, а ранг матрицы не меньше, чем число эндогенных переменных в системе без одного.
Возможна ситуация, когда порядковое условие выполняется для каждого уравнения системы, а определитель матрицы названных коэффициентов равен 0. В этом случае выполняется лишь необходимое, но недостаточное условие.
Пусть Н – число эндогенных переменных в j-м уравнении; D – число экзогенных переменных, которые содержатся в системе, но не входят в него.
Пусть дана следующая СФМ:
y1 = b12*y2 + b13*y3 + a11*x1 + a12*x2
y2 = b21*y1 + a22*x2 + a23*x3 + a24*x4
y3 = b31*y1 + b32*y2 + a31*x1 + a32*x2
Для первого уравнения H = 3 (y1, y2, y3) и D = 2 (x3 и x4 отсутствуют). D + 1 = H, необходимое условие выдержано.
Проверим достаточное условие. Составим матрицу коэффициентов.
Уравнение | Переменные | |
х3 | х4 | |
a23 | a24 | |
Определитель матрицы равен 0, достаточное условие не выполняется, первое уравнение неидентифицируемо.
Для второго уравнение Н = 2 (у1 и у2), D = 1 (отсутствует х1). D + 1 = Н
Уравнение | Переменные | |
у3 | х1 | |
b13 | a11 | |
-1 | a31 |
Определитель неравен 0, ранг матрицы = 2 (не меньше числа эндогенных переменных в системе без одной). Второе уравнение точно идентифицируемо.
29. косвенный метод наименьших квадратов:
• Структурная модель преобразовывается в приведенную форму модели.
• Для каждого уравнения приведенной формы модели обычным МНК оцениваются приведенные коэффициенты.
• Коэффициенты приведенной формы модели трансформируются в параметры структурной формы модели.
Алгоритм двухшагового метода наименьших квадратов:
• Определяется приведенная форма модели, и находятся на ее основе оценки теоретических значений эндогенных переменных.
• Определяются структурные коэффициенты модели по данным теоретических (расчетных) значений эндогенных переменных. Косвенный МНК.
30.Двухшаговый метод наименьших квадратов состоит в том, что оценивают параметры отдельного уравнения системы, а не рассматривают систему в целом. Двухшаговый метод наименьших квадратов (ДМНК) использует следующую центральную идею: на основе приведенной формы модели получают для сверхидентифицируемого уравнения теоретические значения эндогенных переменных, содержащихся в правой части уравнения. Затем они подставляются вместо фактических значений и применяют обычный МНК к структурной форме сверхидентифицируемого уравнения. В свою очередь, сверхидентифицируемая структурная модель может быть двух типов: либо все уравнения системы сверхидентифицируемы, либо же система содержит наряду со сверхидентифицируемыми и точно идентифицируемые уравнения. В первом случае, если все уравнения системы сверхидентифицируемые, для оценки структурных коэффициентов каждого уравнения используется ДМНК. Если в системе есть точно идентифицируемые уравнения, то структурные коэффициенты по ним находятся из системы приведенных уравнений.
Специфика временного ряда
Модели, построенные по данным, характеризующим один объект за ряд последовательных моментов (периодов), называются моделями временных рядов.
Временной ряд – это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов.
Применение традиционных методов корреляционно-регрессионного анализа для изучения причинно следственных зависимостей переменных, представленных в форме временных рядов, может привести к ряду серьезных проблем, возникающих как на этапе построения, так и на этапе анализа эконометрических моделей. В первую очередь эти проблемы связаны со спецификой временных рядов как источника данных в эконометрическом моделировании.
Предполагается, что в общем случае каждый уровень временного ряда содержит три основные компоненты: тенденцию (Т), циклические или сезонные колебания (S) и случайную компоненту (E).
Если временные ряды содержат сезонные или циклические колебания, то перед проведением дальнейшего исследования взаимосвязи необходимо устранить сезонную или циклическую компоненту из уровней каждого ряда, поскольку ее наличие приведет к завышению истинных показателей силы и связи
изучаемых временных рядов в случае, если оба ряда содержат циклические колебания одинаковой периодичности, либо к занижению этих показателей в случае, если сезонные или циклические колебания содержит только один из рядов или периодичность колебаний в рассматриваемых временных рядах различна.
Устранение сезонной компоненты из уровней временных рядов можно проводить в соответствии с методикой построения аддитивной и мультипликативной моделей. Если рассматриваемые временные ряды имеют тенденцию, коэффициент корреляции по абсолютной величине будет высоким, что в данном случае есть результат того, что х и у зависят от времени, или содержат тенденцию. Для того чтобы получить коэффициенты корреляции, характеризующие причинно следственную связь между изучаемыми рядами, следует избавиться от так называемой ложной корреляции, вызванной наличием тенденции в каждом ряде.
Влияние фактора времени будет выражено в корреляционной зависимости между значениями остатков et за текущий и предыдущие моменты времени, которая получила название «автокорреляция в остатках».