Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Оценка значимости уравнения множественной регрессии на основе коэффициента детерминации и результатов дисперсионного анализа




Значимость уравнения множественной регрессии в целом оценивается с помощью F-критерия Фишера:

где Dфакт – факторная сумма квадратов на одну степень свободы;

Dост – остаточная сумма квадратов на одну степень свободы;

- коэффициент (индекс) множественной детерминации;

m – число параметров при переменных x (в линейной регрессии совпадает с числом включенных в модель факторов);

n – число наблюдений.

Оценка значимости уравнения множественной регрес­сии осуществляется путем проверки гипотезы: (гипотеза о незначимости уравнения регрессии).

По таблицам распределения Фишера находят критическое значение F -критерия . Для этого за­даются уровнем значимости (обычно его берут равным 0,05) и двумя числами степеней свободы и . Здесь m – число параметров модели.

Сравнивают фактическое значение F -критерия с табличным .

Если , то ги­потезу о незначимости уравнения регрессии не отвергают. Если , то выдвинутую гипотезу отвер­гают и принимают альтернативную гипотезу о статистиче­ской значимости уравнения регрессии.

 

Частный F-критерий оценивает статистическую значимость присутствия каждого факторов в уравнении. Необходимость такой оценки вызвана тем, что не каждый фактор, вошедший в модель, может существенно увеличивать долю объясненной вариации результативно признака. Кроме того, при наличии в модели нескольких факторов они могут вводиться в модель в разной последовательности. Ввиду корреляции между факторами значимость одного и того же фактора может быть разной в зависимости от последовательности его введения в модель.

Частный F-критерий построен на сравнении прироста факторной дисперсии, обусловленного влиянием дополнительно включенного фактора, с остаточной дисперсией на однй степень свободы по регрессионной модели в целом. Предположим, что оцениваем значимость влияния как дополнительно включенного в модель фактора. В общем виде для фактора частный F-критерий определится как:

где - коэффициент множественной детерминации для модели с полным набором факторов;

- тот же показатель, но без включения в модель фактора

n – число наблюдений;

m – число параметров в модели (без свободного члена) или число независимых переменных модели.

По таблицам распределения Фишера находят критическое значение F -критерия . Для этого за­даются уровнем значимости (обычно его берут равным 0,05) и двумя числами степеней свободы и . Здесь m – число параметров модели.

Сравнивают фактическое значение F -критерия с табличным .

Если Fкр меньше табличного, то включение в модель данного фактора x1 после введения в нее фактора x2 нецелесообразно, и наоборот.

Оценка значимости коэффициентов чистой регрессии с помощью t-критерия Стьюдента сводится к вычислению значения:

где bi - коэффициент чистой регрессии при факторе xi;

- средняя квадратичная ошибка коэффициента регрессии bi.

Она может быть определена по следующей формуле:

где - среднее квадратическое отклонение для фактора y;

- среднее квадратическое отклонения для фактора xi;

- коэффициент детерминации для уравнения множественной регрессии;

- коэффициент детерминации для зависимости фактора xi со всеми другими факторами уравнения множественной регрессии;

n-m -1 – число степеней свободы для остаточной суммы квадратов отклонений.

 

Далее находят табличное значение t -критерия . Для этого за­даются уровнем значимости (обычно его берут равным 0,05) и . Здесь m – число параметров модели.

Сравнивают фактическое значение t -критерия с табличным .

Если фактическое tbi меньше табличного, то коэффициент регрессии bi статистически незначим, и формируется преимущественно под влиянием случайных факторов; и наоборот.

Аналогично оценивается статистическая значимость индекса множественной корреляции:

(k – число независимых переменных модели).

Адекватность регрессионной модели оценим опять же с помощью средней ошибки аппроксимации – среднее отклонение расчетных значений от фактических:

Допустимый предел значений – не более 8-10%.





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 1628 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Большинство людей упускают появившуюся возможность, потому что она бывает одета в комбинезон и с виду напоминает работу © Томас Эдисон
==> читать все изречения...

2530 - | 2189 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.