Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Оценка чувствительности результатов расчета оптимальной производственной программы




 

В реальной жизни при реализации того или иного управленческого решения, в нашем случае оптимальной производственной программы, имеют место возмущения по параметрам системы, обусловленные внешними и внутренними факторами. Эти возмущения приводят к изменению оптимальных значений переменных задачи (объема производства продукции) и целевой функции (прибыли). Поэтому, возникает задача об оценке влияния этих возмущений на управленческое решение и на базе нее формулировки конкретных действий, которые лицо, принимающее решения, должно будет предпринять в этих условиях.

Для решения поставленной задачи будем использовать математический аппарат теории чувствительности.

Пусть мы находимся в классе задач линейного программирования:

(8)

где – параметры модели.

Предположим, найдено оптимальное решение задачи, то есть определены выходные характеристики задачи, а именно оптимальные значения переменных и целевой функции . Продукцию, для которой , будем называть «выгодной»; продукцию, для которой - «невыгодной».

Введем в рассмотрение характеристику запасов ресурсов , которая показывает количество ресурса ого вида, оставшегося после реализации оптимального решения.

Если , то ресурс будем называть «дефицитным». Если - ресурс «недефицитный».

Оценим влияние изменения запасов ого ресурса на выходные характеристики задачи. Для этого введем в рассмотрение коэффициенты чувствительности , которые показывают, на сколько изменится значение ой переменной при увеличении запаса ого ресурса на единицу. В теории чувствительности обосновано, что данные коэффициенты отличны от нуля для «дефицитных» ресурсов и равны нулю для «недефицитных».

Коэффициенты чувствительности , показывают, на сколько измениться значение целевой функции при увеличении запаса ого ресурса на единицу.

Проведем анализ чувствительности решения к изменению параметров системы для периода t0+1. Пусть целевой функцией является максимизация прибыли, а ограничениями выступают запасы сырьевых ресурсов.

(9)

Найдем оптимальный план:

 

Так как , следовательно и первая и вторая продукция «выгодные».

Определим резервы по ресурсам:

Отсюда делаем вывод, что первый и второй ресурс являются «дефицитными», третий - «недефицитный». Так как, коэффициенты чувствительности для «недефицитного» ресурса равны нулю, следовательно . Для определения оставшихся коэффициентов чувствительности, исключаем из системы ограничений третье неравенство, в двух других перейдем к строгим равенствам и обозначим правые части через и . Получим:

(10)

Продифференцируем данную систему по :

(11)

 

или с учетом :

(12)

Откуда .

Аналогично, после дифференцирования системы по , определим .

Рассчитаем коэффициенты чувствительности целевой функции к вариациям «дефицитных» ресурсов.

Так как , следовательно

Предположим, что запас первого ресурса увеличился на 30 единиц. Как это повлияет на управленческое решение, а именно на оптимальную производственную программу и прибыль? Воспользуемся коэффициентами чувствительности и .

Так как , следовательно при увеличении запаса первого ресурса на 30 единиц, оптимальный объем производства первой продукции не изменится

Так как , следовательно, при увеличении запаса первого ресурса на 30 единиц, оптимальный объем производства второй продукции увеличится на единиц.

Так как коэффициент чувствительности , следовательно, при увеличении запаса первого ресурса на 30 единиц, максимальное значение прибыли увеличится на единиц.

Аналогично можно провести анализ чувствительности оптимального решения при изменении запасов по другим ресурсам.






Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 513 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

2308 - | 2104 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.