Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Биологические основы жизни 3 страница




Триплет, соответствующий метионину (АУГ), выполняет функцию инициирования (возбуждения) считывания и не кодирует аминокислоту, если стоит в начале цепи ДНК.

5. Код является коллинеарным. Очерёдность триплетов нуклеотидов ДНК соответствует очерёдности аминокислот в белке.

6. Код является универсальным, т.к. он одинаков для всех живых организмов.

 

Основные этапы биосинтеза белка в клетке.

Синтез белков является одним из наиболее важных и характерных свойств любой живой клетки.

Способность к синтезу белков передается по наследству от клетки к клетке и сохраняется ею в течение всей жизни.

Биосинтез белка - один из центральных процессов метаболизма клетки, который связан с потоком вещества, энергии и информации.

Для осуществления биосинтеза белка необходим ряд условий, среди которых выделим, главные:

1. место синтеза - рибосомы;

2. материал, из которого строятся белки, - аминокислоты;

3. информация - она содержится в участке ДНК - гене, а передаётся синтезируемому белку через РНК (ДНК-► РНК-► Белок);

4. необходимым условием является энергия (в виде АТФ), т.к. синтез белка -процесс эндотермический;

5. важную роль в процессе биосинтеза белка играют ферменты, которые позволяют ему идти быстрее, четко, в определённой последовательности (ферменты: РНК-полимераза. белок-синтетаза и др.).

Рассмотрим процесс синтеза белка на примере эукариотической клетки. Можно выделить 3 основных этапа в этом процессе:

1. Транскрипция.

2. Посттранскрипционные превращения.

3. Трансляция.

Остановимся на этих этапах более подробно.

Транскрипция - первый этап реализации генетической информации, передача (переписывание) её с ДНК-матрицы на образующуюся РНК. Осуществляется в ядре клетки на смысловой нити ДНК, находящейся в деспирилизованном состоянии. Транскрипция идет в 3 стадии: инициация, элонгация и терминация.

Инициация. Для инициации необходимо наличие специального участка в ДНК, называемого промотором. Когда РНК-полимераза связывается с промотором, происходит локальное расплетание молекулы ДНК и образуется открытый промоторный участок.

Элонгация (удлинение) цепи РНК - это стадия транскрипции, которая наступает после присоединения 8 рибонуклеотидов. При этом движущаяся РНК-полимераза вдоль цепи ДНК действует подобно застежке молнии, раскрывая двойную спираль, которая замыкается позади фермента по мере того, как соответствующие основания РНК спариваются с основаниями ДНК.

Терминзция (прекращение роста) цепи мРНК происходит на специфических участках ДНК, называемых терминаторами.

Особенностью транскрипции у эукариот является то, что информация переписывается с промотора, оператора, с экзонов и интронов структурного гена и в результате образуется про-м-РНК, которую называют незрелой м-РНК. Она в среднем в 5 раз длиннее зрелой м-РНК.

Вторым этапом биосинтеза белка, который также происходит в ядре клетки, являются посттранскрипционные изменения структуры про-мРНК. Всю совокупность реакций, в результате которых из незрелой про-мРНК формируется зрелая м-РНК, называют процессингом. Он включает удаление начальных участков про-мРНК (соответствующих промотору и оператору), удаление участков, переписанных с интронов, а также сплайсинг (сшивание) участков, переписанных с экзонов. Зрелая м-РНК, соединяясь в ядре со специфическими белками, образует информоферы. Предполагают, что они способствуют отделению м-РНК от ДНК-матрицы и транспортировке её к ядерной мембране. Вышедшая из ядра м-РНК образует информосомы, вступая в комплекс со специфическими белками, играющими роль в процессе трансляции. Информосомы могут долго существовать в цитоплазме, например, при созревании яйцеклетки.

Следующим этапом биосинтеза белка, который идёт в цитоплазме клетки, является трансляция.

Трансляция - это перевод генетической информации с нуклеотидного кода, записанного в молекулах м-РНК, в определённую последовательность аминокислотв полипептидной цепи синтезируемого белка.

В процессе трансляции активно участвуют м-РНК, рибосомы, т-РНК с различными аминокислотами, ферменты (аминоацил-тРНК-синтетазы, белок-синтетазы и др.), используется энергия АТФ.

Зрелые молекулы мРНК, попавшие в цитоплазму, прикрепляются к рибосомам, а затем протягиваются через них.

Функционирующие рибосомы состоят из 2-х субъединиц, большой и малой, построенных из р-РНК и различных белков, около 50% занимает вода. В каждцй момент внутри рибосомы находится небольшой участок м-РНК - обычно это 2 кодона или 2 триплета нуклеотидов.

Кодон - единица наследственной информации, состоящая их трёх расположенных в определённой последовательности нуклеотидов РНК и кодирующая одну аминокислоту. Т.к. имеется 4 типа нуклеотидов, то существует 64 различных триплетных кодона (43 = 64).

Аминокислоты доставляются в рибосомы различными т-РНК, которых в клетке несколько десятков. Молекулы т-РНК имеют два активных центра. К одному из них с участием АТФ и с помощью ферментов происходит присоединение аминокислоты, при этом образуется комплекс аминоацил-тРНК, а аминокислоты при этом активируются. Процесс узнавания аминокислот транспортными РНК получил название рекогниции. Второй активный центр в аминоацил-тРНК называется антикодоном - это участок молекулы т-РНК. состоящий из трёх нуклеотидов и «узнающий» комплиментарный ему участок из трёх нуклеотидов (кодон) в молекуле м-РНК. Взаимодействие кодона м-РНК и антикодона т-РНК обеспечивает определенное расположение аминокислот в синтезирующейся на рибосомах полипептидной цепи. Рибосома движется относительно м-РНК только в одном направлении (от 5' -> 3'), перемещаясь на один триплет.

Синтез белковой молекулы происходит в большой субъединице, где против одного триплета расположен эминоацильный центр (служит для удержания только что прибывшей молекулы т-РНК с аминокислотой), а против другого - пептидильный центр (фиксируют молекулу т-РНК, присоединённую к растущему концу полипептидной цепи). Образование пептидных связей между аминокислотами происходит в большой субъединице рибосомы, где работает фермент лептидилтрансферраза или белок-синтетаза.

Молекула м-РНК может работать сразу с несколькими рибосомами, все они синтезируют один и тот же белок.

Группа рибосом, одновременно находящихся на одной м-РНК, называется полирибосомой (полисомой).

Рибосома, как место синтеза, может участвовать в синтезе любого белка, характер же белка зависит от м-РНК. Каждая м-РНК транслируется, как правило, несколько раз, после чего разрушается. Среднее время жизни молекулы м-РНК около 2-х минут. Разрушая старые и образуя новые м-РНК, клетка может регулировать тип продуцируемых белков и их количество.

Трансляция включает следующие стадии:

1) инициация - начало синтеза;

2) элонгация - удлинение, наращивание полипептидной цепи;

3) терминация - окончание синтеза.

Синтез белка заканчивается, когда рибосома доходит до терминирующего кодона (бессмысленного). Это кодоны: УАГ, УАА, УГА, они не кодируют никаких аминокислот и являются знаками прекращения синтеза полипептидной цепи на м-РНК. По окончании синтеза белка, рибосома распадается на малую и большую субъединицы. Синтезированная белковая молекула по эндоплазматической сети поступает в ту часть клетки, где данный белок необходим.

 

Клеточный и митотический циклы.

Клеточный цикл - это период жизнедеятельности клетки от момента её возникновения до нового деления или гибели.

Митотический (пролифеоативный) цикл - это период, включающий подготовку клетки к делению и само деление. Он включает аутосинтетическую интерфазу (И /ф) и митоз (М). МЦ = И/ф + М.

Соотношение клеточного и митотического циклов может быть разным в зависимости от типа клеток и от способности их к делению

1 группа Ткани, митозы в которых отсутствуют, регенерация осуществляется на внутриклеточном уровне. Нейроны, зрелые эритроциты,остеоциты костной ткани и др. KЦ = G0

2 группа. Быстрообновляющиеся ткани. Клетки росткового слоя эпидермиса кожи, эпителий кишечника и роговицы глаза, меристематическая ткань у растений и др. кц = МЦ = И/ф + М = (G1+S+G2)+M

3 группа. Медленнообновляющиеся ткани внутренних паренхиматозных органов. Эпителий легких, поджелудочной железы, гепатоциты (клетки печени) и др. KЦ=G0+MЦ=G0+[(G1+S+G2)+M]

Клеточный цикл может иметь разную продолжительность у одного и того же организма в зависимости от тканевой принадлежности. Например, у человека продолжительность клеточного цикла составляет: для эпителия кожи - 20-25 суток, лейкоцитов - 3-5 суток, эпителия роговицы глаза - 2-3 суток, клеток костного мозга - 8-12 часов.

В среднем митотический цикл длится 12-36 часов.

При 24-часовом митотическом цикле продолжительность периодов приблизительно составляет: G1 - 12 часов; S - 6-8 часов; G2 - 3-4 часа и М - 1 час.

Аутосинтетическая и гетеросинтетическая интерфазы.

Митозу предшествует интерфаза, которая называется аутосинтетической и состоит из 3 периодов: G1, S и G2 (G - от англ. gap - интервал). Интерфаза обычно занимает не менее 90% всего времени клеточного цикла.

G1-пресинтетический период

1. Идет синтез белков и РНК

2. Синтезируются белки-гистоны для хромосом.

3. Синтезируются ДНК-полимеразы и др. ферменты.

4. Накапливаются предшественники ДНК -дезоксирибонуклеотиды.

5. Увеличивается количество рибосом и митохондрий.

6. Синтез АТФ.

Все это приводит к тому, что клетка интенсивно растет и может выполнять свою основную функцию.

Набор генетического материала – 2n, 2с.

S-синтетический период

1. Продолжается синтез белков и РНК.

2. Главное событие интерфазы - репликация (удвоение) молекул ДНК!

Набор генетического материала - 2 n. 4с.

G2-постсинтетический период

1. Продолжается синтез белков и РНК.

2. Синтезируются белки веретена деления (тубулинов).

3. Активизируется биосинтез веществ, необходимых для удвоения центриолей.

4. Идет синтез АТФ и других веществ богатых энергией.

5. Потребление клеткой кислорода уменьшается.

Набор генетического материала - 2 n. 4с.

В конце интерфазы изменяется физико-химическое состояние цитоплазмы (из состояния «золь» она переходит в состояние «гель» - становится более густой и менее акгивной). После аутосинтетической интерфазы клетка готова к митозу.

Гетеросинтетическая интерфаза - это период роста, дифференцировки клеток и выполнения ими специфических функций.

Митоз и его значение.

Митоз (от греч. mitos - нить) - непрямое деление клеток, сопровождающееся спирализацией хромосом.

И.Д.Чистяков (1874), Е.Страсбургер (1875) - описали митоз в растительных клетках. В дальнейшем П.И.Перемежко (1879) и В.Флемминг (1879, 1882) показали общую направленность процесса, который лежит в основе современных представлений о митозе.

В процессе митоза условно выделяют несколько стадий, постепенно и непрерывно переходящих друг в друга: 1) профазу; 2) метафазу; 3) анафазу и 4) телофазу. Длительность стадий митоза различна и зависит от типа ткани, физиологического состояния организма, внешних факторов; наиболее продолжительны первая и последняя.

Профаза (от греч. pro- до, перед и греч. phasis - появление) - начальная фаза митоза. Наблюдается спирализация и конденсация хроматина и превращение его в компактные, заметные в световой микроскоп тельца - хромосомы, состоящие из 2-х хроматид, соединенных в области центромеры; начинает формироваться веретено деления, которое у животных образуется с участием центриолей, расходящихся к полюсам тетки, а у растений - без них. Наблюдается растворение ядрышек. Ядерная оболочка распадается на фрагменты и наблюдается беспорядочное движение хромосом в центральной части клетки, соответствующей зоне бывшего ядра.

Метафаза (от греч. meta - между, после) - вторая фаза митоза. Хромосомы выстраиваются по экватору клетки, образуя экваториальную пластинку; хорошо видно, что они состоят из двух хроматид. Завершается формирование веретена деления, есть две группы нитей: одни идут от полюса до полюса, а другие - от полюса до первичной перетяжки хромосом. В конце метафазы - начале анафазы происходит разделение центромер, и у каждой хроматиды с этого момента есть своя перетяжка.

Анафаза (от греч. ana - вверх). Самая короткая стадия митоза. Характеризуется расхождением хроматид к противоположным полюсам клетки.

Относительно механизма движения хроматид существует несколько гипотез, каждая из которых недостаточна для объяснения всех особенностей анафазного расхождения хроматид: а) скольжение хроматид по нитям веретена деления; б) «подталкивание» хроматид в области центромер и другие. Анафаза заканчивается, когда группы хроматид концентрируются у разных полюсов клетки,

Телофаза (от лэеч. telos - конец) - по своему биологическому смыслу обратна профазе. Начинается с момента прекращения движения хроматид (сейчас их можно называть хромосомами) у полюсов клетки, где они деспирализуются (превращаются в состояние хроматина). Разрушается веретено деления. Затем образуется ядерная оболочка и формируются ядрышки (за счет ядрышковых организаторов некоторых хромосом).

Заканчивается телофаза разделением цитоплазмы - цитокенезом. У растений цитокенез происходит путем образования в центре клеточной перегородки, которая нарастает к периферии, а у клеток животных - путем перетяжки цитоплазматической мембраны от периферии к центру клетки.

Биологическое значение митоз а заключается в строго равномерном распределении наследственной информации между дочерними клетками, в результате чего из одной материнской клетки образуются две дочерние клетки, которые идентичны по генетической информации между собой и материнской клетке.

1. Митозом делятся соматические клетки и незрелые половые.

2. За счет митоза происходит рост организма в эмбриональном и постзмбриональном периодах.

3. Митозом осуществляются процессы регенерации:

а) физиологическая регенерация - функционально устаревшие клетки организма заменяются новыми (форменные элементы крови, эпителиальные клетки кожи м Другие);

б) репаративная регенерация - восстановление утраченных органов и тканей. А. Митоз - одна из форм бесполого размножения у простейших.

 

 

Амитоз.

Прямое деление клетки, или амитоз, было обнаружено и описано раньше митотического деления (Р.Ремак в 1841 году).

Амитоз - это деление клетки, у которой ядро находится в интерфазном состоянии. При этом не происходит конденсации хромосом и образования веретена деления. Формально амитоз должен приводить к появлению 2-х клеток, однако чаще всего он приводит к разделению ядра и к появлению дву- или многоядерных клеток.

Амитоз встречается реже, чем митотический тип деления. Эта форма деления имеет место практически у всех эукариот: животных, растений, простейших (у них имеет свои закономерности и особое значение).

Существует несколько способов прямого деления ядра:

· образование перетяжки - при этом ядро принимает форму гантели, и после разрыва перетяжки образуется 2 ядра;

· образование насечки, которая углубляясь внутрь, делит ядро на 2 части;

· фрагментация (множественное деление ядра), при этом образуются ядра неравной величины; встречается чаще всего.

Многочисленные исследования показали, что амитоз встречается почти всегда в клетках стареющих, обречённых на гибель, дегенерирующих, стоящих в конце своего развития и неспособных дать полноценные клетки. Так, например, в норме амитотическое деление ядер встречается в зародышевых оболочках животных, в фолликулярных клетках яичника, в гигантских клетках трофобластов и т.д.

У растений амитоз ядра встречается в дифференцированных, временных или отмирающих тканях (стенки завязи, паренхима клубней, нуцеллус, эндосперм и др.).

Очень часто разные формы амитотического деления ядер встречаются при различных патологических процессах (воспаление, злокачественный рост).

 

Размножение Поддерживает длительное существование вида. Обеспечивает преемственность между родителями и их потомством в ряду многих поколений. Приводит к увеличению численности особей вида и способствует его расселению.

Различают 2 типа размножения: бесполое и половое. В бесполом размножении участвует одна особь; образование нового организма связано с соматическим клетками, а в некоторых случаях образуются специализированные клетки - споры. В половом размножении обычно участвуют две родительские особи; новый организм возникает из половых клеток, которые у большинства организмов образуются в репродуктивных органах.

Бесполое размножение (Половое) 1. Родители Одна особь (Обычно две особи) 2. Клеточные источники У одноклеточных - клетка -организм: У многоклеточных - одна или несколько соматических клеток родителя. (От каждого родителя потомок получает по одной половой клетке (гамете), которые обычно сливаются и образуют зиготу.) 3. В основе размножения -следующий тип деления клеток Митоз (мейоз) 4. Потомство Является генетически точной копией родителя (исключение - соматические мутации). (Генетически отличны от обоих родителей.) 5 Преимущества и эволюционное значение. При любой форме бесполого размножения наблюдается увеличение численности особи данного вида без повышения их генетического разнообразия: все особи являются точной копией материнского организма. Способствует поддержанию наибольшей приспособленности организма в маломенягащихся условиях обитания; усиливает роль стабилизирующей формы естественного отбора .(Преимущество полового размножения над бесполым заключается в том, что при слиянии гамет образуется зигота, которая несет наследственную информацию обоих родителей, благодаря чему резко увеличивается наследственная изменчивость потомков. Дает эволюционные и экологические перспективы, т.к. за счет генетического разнообразия создает предпосылки к освоению разнообразных условий обитания; способствует осуществлению творческой роли естественного отбора.)

Формы бесполого размножения

Деление: митоз (эукариотические клетки), амитоз (прокариотические клетки).

Множественное деление -шизогония (споровики).

Эндодиогения - внутреннее почкование с образованием двух клеток (токсоплазма).

Спорообразование. Спорами называют одноклеточные, реже двухклеточные или многоклеточные зачатки растений и животных, которые служат для размножения и сохранения вида в неблагоприятных условиях (споровики, грибы, мхи, папоротники).

Вегетативное размножение у растений и животных. Вегетативное размножение - размножение при помощи вегетативных органов (у растений) и частей тела (у животных). Оно основано на способности организмов восстанавливать (регенерировать) недостающие части. Этот способ размножения широко распространен в природе, но чаще встречается у растений, особенно у цветковых.

Формы полового размножения

В основе полового размножения у одноклеточных простейших лежит половой процесс, который осуществляется в виде: а)копупяции (большинство простейших); 6)коньюгации (у инфузорий).

Слияние гамет при оплодотворении (водоросли, многие грибы, высшие растения, животные, человек).

Партеногенез - особая форма полового размножения, при котором развитие организма происходит из неоллодотворенных поповых клеток (некоторые представители растений, членистоногих, молюсков, рыб и др.). Формы партеногенеза:

· Естественный имеет место в природе, не требует специальных воздействий (членистоногие).

· Искусственный вызывается искусственно с использованием механической, химической или др. стимуляции (тутовый шелкопряд).

· Облигатный размножение организма идет только партеногенетически (низшие ракообразные, кавказская скальная ящерица).

· Факультативный размножение может осуществляется как партеногенетически, так и с оплодотворением (пчелы, осы, муравьи).

· Гиногёнез - источником наследственного материала для развития потомков служит ДНК яйцеклетки (только самки).

· Андрогенез - развитие потомка происходит лишь с мужским ядерным материалом, от яйцеклетки остается лишь цитоплазма (только самцы).

 

Мейоз. его особенности и значение.

Мейоз - деление созревания половых клеток, в результате которого происходит редукция (уменьшение) числа хромосом, т.е. переход клеток из диплоидного состояния в гаплоидное.

Мейоз впервые был описан в конце XIX века Е. ван-Бенаденом, Е. Страсбургером, В. Флеммингом.

Мейоз состоит из двух последовательных делений клетки: I - редукционного, которое уменьшает число хромосом в два раза и II - эквационного (уравнительного) деления.

Первому делению мейоза предшествует точно такая же интерфаза, как и митозу, где происходит редупликация ДНК и удвоение хромосом (см. описание интерфазы в митотическом цикле).

I деление мейоза.

В нем выделяют 4 фазы: профазу, метафазу, анафазу и телофазу.

Профаза I - сложна и длительна по времени. В ней выделяют 5 стадий: лептотена, зиготена. пахитена, диплотена, диакинез.

Лептотена (стадия тонких нитей) - начало спирализации хромосом.

Зиготена (стадия сливающихся нитей) - сближение и коньюгация гомологичных хромосом. Две коньюгированные гомологичные хромосомы называются «бивалентом», число бивалентов – n.

Пахитена (стадия толстых нитей) - спирализация и конденсация хромосом продолжается, за счет чего они становятся короче и толще. В середине пахитены в каждой хромосоме обособляются две хроматиды, образуя тетрады, число которых - п. Происходит кроссинговер -перекрест хромосом и обмен аллельными генами между гомологичными хромосомами (на уровне хроматид).

Диплотена - начинается отталкивание гомологичных хромосом, особенно сильное в области центромер. Но есть места перекреста хромосом - хиазмы, которые напоминают греческую букву х. Хиазмы "сползают" к концам хромосом.

Диакинез - происходит уменьшение числа хиазм, кроссинговер заканчивается. Хромосомы максимально спирализованы. Растворяется ядерная оболочка, начинает формироваться веретено деления.

Метафаза I - биваленты (пары гомологичных хромосом) выстраиваются в экваториальной плоскости, число их" - n. Заканчивает формироваться веретено деления. Но центромеры хромосом не делятся!

Анафаза I - к разным полюсам клетки расходятся целые гомологичные хромосомы (!).

Телофаза I - происходит частичная деспирализация хромосом у полюсов, формирование ядра, деление цитоплазмы. В результате образуются две дочерние клетки, имеющие гаплоидный набор хромосом, но ещё удвоенное количество ДНК (n, 2с).

После первого деления мейоза, перед вторым следует интерфаза II - она или короткая, или может отсутствовать. Удвоение ДНК в интерфазу II не происходит!

II деление мейоза - по схеме напоминает митоз, но идет на гаплоидном урозне.

В нем также выделяют 4 фазы:

Профаза II - хромосомы спирализуются, образуется веретено деления; в конце исчезает ядерная оболочка.

Метафаза II - в экваториальной плоскости располагается гаплоидное число хромосом, каждая состоит из двух хроматид. В конце метафазы делится центромера, и каждая хроматида получает собственную центромеру.

Анафаза II - к противоположным полюсам клетки расходятся хроматиды каждой хромосомы! На каждом полюсе концентрируется гаплоидное число хроматид (хромосом будущей клетки).

Телофаза II - в результате второго деления из каждой клетки образуется две, т.е. всего четыре клетки - nс (гаплоидные по числу хромосом и количеству ДНК).

Особенности мейоза:

1. Состоит из 2-х делений: первое - редукционное; второе - эквационное (уравнительное).

2. Удвоение ДНК происходит только в интерфазу I, интерфаза II - короткая, или отсутствует.

3. Профаза I - очень длительная (происходит коньюгация гомологичных хромосом, образуются биваленты, затем тетрады; идет кроссинговер - обмен аллельными генами между гомологичными хромосомами).

4. В анафазу I - к разным полюсам расходятся гомологичные хромосомы. В анафазу II -к разным полюсам клетки расходятся хроматиды.

5. В результате 2-х делений мейоза образуется 4 гаплоидные клетки (по хромосомам и по ДНК).

6. Мейоз имеет место во время гэметогенеза (в зоне созревания).

Биологическое значение мейоза

1) Благодаря мейозу поддерживается постоянство числа хромосом в ряду поколений за счет уменьшения диплоидного числа хромосом (46 у человека) наполовину до гаплоидного (23 у человека) в гаметах. (Восстановление диплоидного набора будет происходить при оплодотворении).

2) Мейоз является источником комбинативной изменчивости и разнообразия особей внутри вида за счет кроссинговера, приводящего к рекомбинации генов и случайного расхождения гомологичных хромосом в половые клетки.

 

19

Сперматогенез, или развитие мужских половых клеток.

Развитие сперматозоидов происходит а стенке извитых канальцев семенников. В развитие мужских половых клеток различают 4 периода: 1) размножение; 2) рост; 3) созревание; 4) формирование. В семенных канальцах выделяют аналогичные 4 зоны. Схема сперматогенеза представлена в таблице №15.

I. Период размножения мужских половых клеток - сперматогонии у человека идет на протяжении всей жизни организма и к старости постепенно затухает. У плода человека размножается часть сперматогонии, но массовое их размножение наблюдается с наступлением половой зрелости. Сперматогонии размножаются митозом и дают новые поколения клеток (это диплоидные клетки - 2п, 2с). Сперматогонии располагаются на периферии извитых канальцев семенника, под его оболочкой. Это небольшие округлые клетки, имеющие хорошо заметные ядра, богатые хроматином. Некоторая часть сперматогонии перестает делиться, перемещается ближе к просвету канальца в зону роста.

II. Период роста мужских половых клеток характерен тем, что масса их ядер и цитоплазмы увеличиваются примерно в 4 раза, и они превращаются в сперматоциты 1-го порядка (2п, 2с). В конце периода роста в них происходит редупликация ДНК и они становятся тетраплоидными клетками (2л, 4с).

III. Период созревания. Сначала происходит первое мейотическое деление (редукционное) и из одного сперматоцита I порядка образуется 2 сперматоцита II порядка с гаплоидным числом хромосом, но ещё диплоидным количеством ДНК (п, 2с). После II мейоткческого деления из каждого сперматоцита II порядка образуется по две сперматидь:, имеющие гаплоидное число хромосом и гаплоидное количество ДНК (п, с). Таким образом сущность периода созревания состоит в том, что в половых клетках путем мейотического деления происходит уменьшение количества хромосом вдвое, а ДНК вчетверо. Сперматоциты II порядка вдвое меньше сперматоцитов I порядка, в их ядрах мало хроматина, который сосредоточен в основном под оболочкой ядра, и они располагаются ещё ближе к просвету извитого семенного канальца. Сперматиды II порядка вдвое меньше, чем сперматоциты II порядка, ядро их очень маленькое, в нем наблюдается очень много хроматина. Сперматиды располагаются ещё ближе к просвету извитого семенного канальца. После образования сперматид завершается период созревания и начинается последний период развития мужских половых клеток.

IV. Период формирования. Состоит в том, что сперматиды превращаются в сперматозоиды: формируется головка, шейка и хвостик. В период формирования ядро сперматиды уменьшается в объеме и удлиняется. В ядре наблюдается компактизация ядерного материала и переход его в неактивное состояние. Между ядром и плазмалеммой располагается комплекс Гольджи, который начинает продуцировать пузырьки Гольджи, содержащие мельчайшие гранулы фермента гиалуронидазы. Пузырьки Гольджи сливаются и гранулы фермента располагаются между мембраной ядра и плазмалеммой в виде акросомной гранулы. Обе центриоли располагаются у мембраны ядра на противоположной стороне от акросомы. Проксимальная центриоль лежит поперек продольной оси удлиняющейся клетки, а дистальная центриоль - вдоль неё. От дистальной центриоли, которая выполняет роль базального тельца, начинают расти микротрубочки жгутика, что ведет к резкому удлинению клетки. В средней части жгутика постепенно накапливаются митохондрии, формируя митохондриальную спираль. После образования акросомной гранулы комплекс Гольджи отходит от ядра и распадается на мельчайшие пузырьки, цитоплазма спускается по хвостику, сперматиды ещё более удлиняются и превращаются в сперматозоиды. Процесс формирования сперматозоидов в IV зоне называется спермиогенезом. Сформированные сперматозоиды сначала располагаются в извитом семенном канальце между сперматидами, а затем поступают в просвет извитого семенного канальца, оттесняясь туда вновь образующимися сперматозоидами.





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 736 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2205 - | 2093 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.03 с.