Замена переменной.
Будем полагать функции f(u) и φ'(x) непрерывными. Замена переменной производится по формуле:
Формула проверяется дифференциалом обеих частей равенства по x (правая часть дифференцируется как сложная функция).
Интегрирование по частям:
Пусть u и v являются функциями x. Умножив обе части равенства (uv)'=u'v+uv' на dx, получим d(uv)=vdu+udv. Интегрируя приходим к формуле интегрирования по частям
40. Интеграл с переменным верхним пределом. Теорема о его непрерывности.
Теорма: Если функция f(x) интегрируема на отрезке [a,b], то функция
непрерывна на этом отрезке.
Доказательство: Дадим числу х приращение ∆х так, чтобы х+∆хÎ[a,b]. Для наглядности изобразим на числовой оси один из возможных вариантов расположения точек:
a x0 x х+∆х b
Получим:
По теореме (Если функция y=f(x) интегрируема на отрезке, то интегрируема и абсолютная величина |f(x)|, причем
…(на этом теорема закончилась, но неравенство относится к ней.) и следствию из теоремы (Если на отрезке [a,b] функция f(x) интегрируема и удовлетворяет неравенству m£f(x)£M. То выполняются неравенства:
(на этом следствие из теоремы закончилось)
получаем:
Отсюда следует, что при ∆х→0 будет ∆F→0. Это доказывает непрерывность функции F(x). Отметим, что для подынтегральной функции f(x) точка х может быть точкой разрыва.
Теорема о произвольной от интеграла с переменным верхним пределом.
Теорема: Если функция y=f(x) непрерывна на промежутке (a,b), то производная от интеграла
По переменному верхнему пределу x существует и равна подынтегральной функции с заменой переменной интегрирования верхним пределом х, т.е. F'(x)=f(x)
Доказательство: Дадим аргументу х приращение
∆х так, чтобы х+∆хÎ(a,b). Для приращения ∆F функции F(x) воспользуемся формулой
и применим теорему о среднем значении (Если функция y=f(x) непрерывна на отрезке [a,b], то найдется такая точка ξÎ (a,b), что справедливо равенство:
Теорема верна и при b<a.) получим:
Число x заключено между числами х и х+∆х и при стремлении ∆х к нулю ξ стремится к х.
Перейдем к вычислению производной F'(x).
Последнее равенство основано на непрерывности функции f(x) в любой точке х промежутка (a,b).
Следствие: Всякая функция f(x), непрерывная на промежутке (a,b), имеет первообразную на этом промежутке.
Действительно, первообразной для такой функции является функция
Предыдущая теорема устанавливает связь между неопределенным и определенным интегралом. Можно написать:
Формула Ньютона-Лейбница.
Пусть F(x) -произвольная первообразная для функции f(x), заданной на промежутке [a,b]. Так как две первообразные одной и той же функции отличаются на постоянное слагаемое, то верно равенство (1):
(в качестве числа х0 взято число а).
В этом тождестве положим х=а и получим,
Откуда С = -F(a). Формула (1) примет вид:
Заменяя здесь х на b, приходим к формуле Ньютона-Лейбница:
Иногда ее правую часть записывают короче с помощью двойной подстановки: