Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Интегрирование по частям и замена переменной в неопределенной интеграле




Замена переменной.

Будем полагать функции f(u) и φ'(x) непрерывными. Замена переменной производится по формуле:


Формула проверяется дифференциалом обеих частей равенства по x (правая часть дифференцируется как сложная функция).

Интегрирование по частям:

Пусть u и v являются функциями x. Умножив обе части равенства (uv)'=u'v+uv' на dx, получим d(uv)=vdu+udv. Интегрируя приходим к формуле интегрирования по частям


 

 

40. Интеграл с переменным верхним пределом. Теорема о его непрерывности.

Теорма: Если функция f(x) интегрируема на отрезке [a,b], то функция


непрерывна на этом отрезке.

Доказательство: Дадим числу х приращение ∆х так, чтобы х+∆хÎ[a,b]. Для наглядности изобразим на числовой оси один из возможных вариантов расположения точек:

 
 

a x0 x х+∆х b


Получим:

 
 

По теореме (Если функция y=f(x) интегрируема на отрезке, то интегрируема и абсолютная величина |f(x)|, причем

 
 

…(на этом теорема закончилась, но неравенство относится к ней.) и следствию из теоремы (Если на отрезке [a,b] функция f(x) интегрируема и удовлетворяет неравенству m£f(x)£M. То выполняются неравенства:

(на этом следствие из теоремы закончилось)

получаем:

 
 

Отсюда следует, что при ∆х→0 будет ∆F→0. Это доказывает непрерывность функции F(x). Отметим, что для подынтегральной функции f(x) точка х может быть точкой разрыва.

 

 

Теорема о произвольной от интеграла с переменным верхним пределом.

Теорема: Если функция y=f(x) непрерывна на промежутке (a,b), то производная от интеграла


По переменному верхнему пределу x существует и равна подынтегральной функции с заменой переменной интегрирования верхним пределом х, т.е. F'(x)=f(x)

Доказательство: Дадим аргументу х приращение

∆х так, чтобы х+∆хÎ(a,b). Для приращения ∆F функции F(x) воспользуемся формулой

 
 

 
 

и применим теорему о среднем значении (Если функция y=f(x) непрерывна на отрезке [a,b], то найдется такая точка ξÎ (a,b), что справедливо равенство:

Теорема верна и при b<a.) получим:


Число x заключено между числами х и х+∆х и при стремлении ∆х к нулю ξ стремится к х.

Перейдем к вычислению производной F'(x).


Последнее равенство основано на непрерывности функции f(x) в любой точке х промежутка (a,b).

Следствие: Всякая функция f(x), непрерывная на промежутке (a,b), имеет первообразную на этом промежутке.

 
 

Действительно, первообразной для такой функции является функция

Предыдущая теорема устанавливает связь между неопределенным и определенным интегралом. Можно написать:


 

Формула Ньютона-Лейбница.

Пусть F(x) -произвольная первообразная для функции f(x), заданной на промежутке [a,b]. Так как две первообразные одной и той же функции отличаются на постоянное слагаемое, то верно равенство (1):


(в качестве числа х0 взято число а).

 
 

В этом тождестве положим х=а и получим,

Откуда С = -F(a). Формула (1) примет вид:

Заменяя здесь х на b, приходим к формуле Ньютона-Лейбница:


Иногда ее правую часть записывают короче с помощью двойной подстановки:






Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 646 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Либо вы управляете вашим днем, либо день управляет вами. © Джим Рон
==> читать все изречения...

2256 - | 1995 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.