Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Если в замкнутой системе не действуют силы, трения и силы сопротивления, то сумма кинетической и потенциальной энергии всех тел системы остается величиной постоянной




9) Момент инерции и его вычисление. Теорема Штейнера.

Момент инерции — скалярная физическая величина, мера инертности тела во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Единица измерения СИ: кг·м².

Обозначение: I или J.

Момент инерции осевые и центробежные. Осевым Момент инерции тела относительно оси z называется величина, определяемая равенством:

Центробежным Момент инерции относительно системы прямоугольных осей х, у, z, проведённых в точке О, называют величины, определяемые равенствами:

теорема Штейнера: момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела Jс относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела m на квадрат расстояния d между осями:

где

Jс — известный момент инерции относительно оси, проходящей через центр масс тела,

J — искомый момент инерции относительно параллельной оси,

m — масса тела,

d — расстояние между указанными осями.

10) Момент силы — векторная физическая величина, равная произведению радиус-вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.

 

Единицы измеренияСИ Ньютон-метр. В физике момент силы можно понимать как «вращающая сила». В системе СИ единицами измерения для момента силы является ньютон-метр. Момент силы иногда называют моментом пары сил, это понятие возникло в трудах Архимеда над рычагами. В простейшем случае, если сила приложена к рычагу перпендикулярно ему, момент силы определяется как произведение величины этой силы на расстояние до оси вращения рычага, есть момент силы. Например, сила в 3 ньютона, приложенная к рычагу на расстоянии 2 метров от его оси вращения, создаёт такой же момент, что и сила в 1 ньютон, приложенная к рычагу на расстоянии 6 метров до оси вращения. Более точно, момент силы частицы определяется как векторное произведение:

где — Fсила, действующая на частицу, а r — радиус-вектор частицы.

Основной закон динамики вращательного движения в традиционной механике формулируется так, что первая производная по времени t от момента импульса L механической системы относительно любой неподвижной точки О равна главному моменту М внешних относительно той же точки О всех внешних сил приложенных к системе:

dL/ dt = M внеш. Закон динамики вращательного движения аналогичен второму закону неинерциальной импульсной механики d P / dt = F, в котором изменение момента импульса движения dР для тела массой m и ускорением - а по времени dt, заменен на изменение момента импульса вращения dL/dt.

11) Моме́нт и́мпульса характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Зако́н сохране́ния моме́нта и́мпульса (закон сохранения углового момента) — векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной в случае равновесия системы. В соответствии с этим, момент импульса замкнутой системы относительно любой неподвижной точки не изменяется со временем.

Закон сохранения момента импульса есть проявление изотропности пространства.

12 ) Кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материальных точек па которые это тело можно разбить:

Если тело вращается вокруг неподвижной оси с угловой скоростью , то линейная скорость i-ой точки равна

, где - расстояние от этой точки до оси вращения. Следовательно.

где J - момент инерции тела относительно оси вращения.

Рассчитаем работу силы, вызывающей вращательное движение тела вокруг некоторой оси и приложенной к произвольной точке этого тела. Согласно определению работы имеем:

dA = F·ds = Ft·ds.

Поскольку ds = r·da, то получим следующее выражение для работы:

dA = Ft·r·da = M·da.





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 630 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Либо вы управляете вашим днем, либо день управляет вами. © Джим Рон
==> читать все изречения...

2227 - | 1965 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.