Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Робота № 2/5. Визначення термодинамічної активності компонентів розчину кріоскопічним методом




Мета роботи. Визначити коефіцієнти активності розчиненої речовини та розчинника.

Методика роботи. Термодинамічну активність розчиненої речовини можна визначити, якщо експериментально виміряти певну властивість розчину і скористатися для розрахунку рівнянням, що пов'язує виміряну властивість з концентрацією, замінивши в цьому рівнянні концентрацію на активність. Обов'язковою умовою при цьому є вимога, щоб згадане рівняння мало точне термодинамічне обгрунтування. Такі вимоги задовольняє рівняння (4) роботи № 2/1. Заради зручності використання його можна переписати в такій формі

(1)

де, згідно з рівнянням (9) роботи № 2/1,

(2)

а kкр - кріоскопічна стала розчинника.

Інтегрування рівняння (1) пов'язано з певними труднощами. Річ у тім, що стандартний стан для розчиненої речовини (на відміну від розчинника) обирають, як правило, на основі закону Генрі, тобто таким чином, щоб активність збігалася з концентрацією в безмежно розведених розчинах. Тому "при інтегруванні в границях від 0 до m по нижній границі виникає . Для подолання цієї незручності використовується нова змінна j, яка визначається рівнянням:

(3)

Диференціал j дорівнює:

(4)

Підставивши рівняння (4) в (1), маємо:

(5)

або

(6)

При інтегруванні цього рівняння врахуємо, що в безмежно розведеному розчині , бо для такого розчину справедливою є рівність (7) з роботи № 2/1. Тоді

(7)

Оскільки

(8)

остаточно маємо:

(9)

Останні рівняння свідчать, що, хоча у вихідному рівнянні (1) стоїть безрозмірна активність а2, безпосередньо із кріоскопічних вимірювань визначається не раціональний коефіцієнт активності , а практичний . Інтеграл у рівнянні (9) береться графічно, як площа під кривою, побудованою в координатах j/m2 – m2 у границях від 0 до m2

Порядок роботи. Приготувати серію із шести розчинів досліджуваної речовини в інтервалі концентрацій від 0 до 4-5 m. За методикою, описаною у роботі № 2/1, визначити температуру замерзання кожного розчину, а також чистого розчинника. Розрахувати ΔT, j(за рівнянням (3)) та j/m2. Побудувати залежність величини j/m2 від моляльності розчину m2. Виміряти значення площ під кривою в інтервалах від 0 до кожної з досліджуваних концентрацій m2

(10)

Розраховати lnγm та γm для кожного з розчинів. Результати експериментальних вимірювань та розрахунків звести у таблицю за формою:

m2 ΔT j j/m2 Sm2 lnγm γm
               
               

Оскільки в області невеликих концентрацій відношення j/m2 часто буває сталою величиною, значення інтеграла Sm2 за такої умови дорівнює:

(11)

Тоді відповідно до рівняння (9)

(12)

Одержані результати проаналізувати з цієї позиції, зіставивши, зокрема, дані четвертої та шостої колонок таблиці.

За значеннями ΔT,що містяться в другій колонці, можна також розрахувати активність розчинника а1. Для цього можна скористатись наближеним рівнянням (2) з роботи № 2/1 або дещо точнішим, яке можна одержати інтегруванням рівняння (1) з роботи № 2/1 з урахуванням температурної залежності ентальпії плавлення розчинника. Останню можна виразити рівнянням Кірхгофа:

(13)

де ΔHпл - ентальпія переходу 1 моля твердого розчинника в розчин з концентрацією m2 за температури Т; ΔН*ПЛ - ентальпія переходу 1 моля твердого розчинника в рідкий стан за за температури Т0; ΔСР - різниця мольних теплоємностей рідкого і твердого розчинника, наближено приймається сталою.

Підставляючи рівняння (13) в (1) з роботи № 2/1 й інтегруючи, одержимо:

(14)

Логарифм у другому доданку можна розкласти в ряд:

(15)

Якщо обмежитись першими двома членами ряду, то рівняння (14) можна переписати:

(16)

Якщо ж прийняти , то одержимо ще більш наближене рівняння:

(17)

Так, для водних розчинів ; ; . Тоді:

(18)

Активність розчинника а1 з рівнянь (1), (2), (14) та (18) є безрозмірною, тобто такою, що заміняє концентрацію, виражену мольними частками. Тому, розділивши її на мольну частку розчинника, можна одержати значення раціонального коефіцієнта активності .

Література: [21, с. 75-86; 24, с. 363-367].

 

 





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 321 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

2269 - | 2069 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.