Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Законы Ома и Джоуля-Ленца в интегральной и дифференциальной формах. Зав-сть сопротивления от температуры




Немецкий физик Г.Ом (1787-1854) экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника (98.1), где R – электрическое сопротивление проводника.

Закон Ома для участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника

Закон Ома можно представить в дифференциальной форме.

Подставив выражение в (98.1), получим (98.3), где величина обратная удельному сопротивлению, называется удельной электрической проводимостью вещества проводника.

, формулу (98.3) можно записать в виде

Так как в изотропном проводнике носители тока в каждой точке движутся в направлении вектора , то направления и совпадают. Поэтому формулу можно записать в виде . Это выражение – закон Ома в дифференциальной форме, связывающий плотность тока в любой точке внутри проводника с напряженностью электрического поля в этой же точке.

Опыт показывает, что изменение удельного сопротивления и сопротивления проводника при t и 0оС. Следовательно, температурная зависимость сопротивления может быть представлена в виде R=αRoT.

Зависимость сопротивления от температуры представлена на рисунке (кривая 1). При низких температурах наблюдается от этой зависимости. Впоследствии было обнаружено, что сопротивление многих металлов и сплавов при очень низких температурах Тк, называемых критическими, характерных для каждого вещества, скачкообразно уменьшается до 0 (кривая 2), т. Е. металл становится абсолютным проводником. Впервые это явление, названное сверхпроводимостью, обнаружено в 1911 г. Г. Камерлинг-Оннесом для ртути.

На зависимости электрического сопротивления металлов от t основано действие термометров сопротивления, кот. Позволяют измерять t с точностью до 0,001 К.

Рассмотрим однородный проводник, к концам которого приложено напряжение U.

За время dt через сечение проводника переносится заряд dq — Idt. При этом силы электростатического поля и сторонние силы совершают работу (99.1)

Если сопротивление проводника R, то, используя закон Ома (98.1), получим, что работа тока

Из (99.1) и (99.2) следует, что мощность тока

Если ток проходит по неподвижному металлическому проводнику, то вся работа идет на его нагревание и, но закону сохранения энергии, dQ = dA. (99.4)

Таким образом, используя выражения (99.4), (99.1) и (99.2), получим dQ = IUdt = PRdt = (U2/R)dt. (99.5)

Выражение (99.5) представляет собой закон Джоуля —Ленца, экспериментально установленный независимо друг от друга Дж. Джоулем и Э. X. Ленцем.

 

Количество теплоты, выделяющееся за единицу времени в единице объема, называется удельной тепловой мощностью тока. Она равна w = pf. (99.6)

Используя дифференциальную форму законаи соотношение , получим w = jE = E2. (99.7)

Формулы (99.6) и (99.7) являются обобщенным выражением закона Джоуля —Ленца в дифференциальной форме, пригодным для любого проводника.

 





Поделиться с друзьями:


Дата добавления: 2016-03-25; Мы поможем в написании ваших работ!; просмотров: 911 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Не будет большим злом, если студент впадет в заблуждение; если же ошибаются великие умы, мир дорого оплачивает их ошибки. © Никола Тесла
==> читать все изречения...

2574 - | 2263 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.