Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Алгоритм решения уравнения в полных дифференциалах 3 страница




5) (u(v))¢ = u¢(v)×v¢

Производные основных элементарных функций.


1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)


Производная сложной функции.

Теорема. Пусть y = f(x); u = g(x), причем область значений функции u входит в область определения функции f. Тогда

Производная показательно-степенной функции.

Функция называется показательной, если независимая переменная входит в показатель степени, и степенной, если переменная является основанием. Если же и основание и показатель степени зависят от переменной, то такая функция будет показательно – степенной.

Пусть u = f(x) и v = g(x) – функции, имеющие производные в точке х, f(x)>0.

Найдем производную функции y = uv. Логарифмируя, получим:

lny = vlnu

Производная функции заданной параметрически.

Дана функция . Тогда ее производная будет

Производная неявно заданной функции.

Дана функция . Тогда ее производная будет

Пример. Найти производную функции .

Сначала преобразуем данную функцию:

Пример. Найти производную функции .

Пример. Найти производную функции

Пример. Найти производную функции .

По полученной выше формуле получаем:

Производные этих функций:

Окончательно:

ВАРИАНТЫ

Числовых данных параметров т и п определяются по первым буквам фамилии и полного имени.

    А-В Г-Е Ж-И К-М Н-П Р-Т У-Х Ц-Ш Щ-Э Ю-Я
Фамилия т                    
Имя п                    

ЗАДАНИЯ

1. Найти производные функций:

1) ;

2) ;

3) ;

4)

5) .

6) ;

2. Найти производную третьего порядка функции .

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Ознакомиться с теоретическими сведениями.

2. Выбрать свой вариант согласно первым буквам фамилии и полного имени.

3. Записать исходные данные.

4. Решить задания.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Производная функции. Понятие о производных высших порядков.

2. Основные правила дифференцирования. Производная сложной функции.

3. Свойства производной функции. Производные основных элементарных функций.

4. Дифференцирование неявных, параметрически заданных и заданных в полярных координатах функций.


5.


6.

Практическая работа №8
Тема: Применение дифференциала и производной.

Цель: Научиться применять геометрический и физический смысл производной, вычислять предел правилом Лопиталя, применять дифференциал к приближенным вычислениям.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Геометрический смысл производной.

Определение. Если функция дифференцируема в точке (т.е. если существует конечная производная ), то уравнение касательной к графику функции в точке можно найти по следующей формуле: .

Определение. Если функция дифференцируема в точке (т.е. если существует конечная производная ), то уравнение нормали к графику функции в точке можно найти по следующей формуле: .

Механический смысл производной.

Если точка движется вдоль оси х и ее координата изменяется по закону x(t), то мгновенная скорость точки: , а ускорение .

Правило Лопиталя.

Рассмотрим функции , которые бесконечно малыв некоторой точке k. Если существует предел их отношений , то в целях устранения неопределённости или можно взять две производные – от числителя и от знаменателя. При этом: , то есть при дифференцировании числителя и знаменателя значение предела не меняется.

Применение правила Лопиталя к неопределённости вида , , , , так же возможно после некого преобразования функции в пределе.

Дифференциал функции.

Производную функции можно записать через дифференциал функции в виде: . Откуда видно: , что приращение функции приближенно равно дифференциалу функции при . Получим формулу для приближенных вычислений функции

.

То есть идея формулы приближенных вычислений состоит в том, чтобы точное значение функции заменить суммой значений и . Для этого необходимо начальное значение x 0 разделить на два слагаемых , причем так, чтобы значение функции от числа x легко вычислялось.

ВАРИАНТЫ

Числовых данных параметров т и п определяются по первым буквам фамилии и полного имени.

    А-В Г-Е Ж-И К-М Н-П Р-Т У-Х Ц-Ш Щ-Э Ю-Я
Фамилия т                    
Имя п                    

ЗАДАНИЯ

1. Составить уравнение нормали и касательной к кривой в точке (n–m; m+n).

2. Материальная точка движется по закону . Найти скорость и ускорение в момент времени t=n с.

3. Найдите предел по правилу Лопиталя .

4. Вычислить приближенное значение функции , используя дифференциал функции.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Ознакомиться с теоретическими сведениями.

2. Выбрать свой вариант согласно первым буквам фамилии и полного имени.

3. Записать исходные данные.

4. Решить задания.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Геометрический и физический смысл производной.

2. Теоремы Ролля, Лагранжа, Коши. Правило Лопиталя.

3. Применение формулы Тейлора в приближенных вычислениях.

4. Дифференциал функции, его геометрический смысл.

5. Полный дифференциал. Частные производные.

6. Приложение дифференциала функции к приближённым вычислениям.


7.

Практическая работа №9
Тема: Исследование функций и построение графиков.

Цель: Научиться исследовать функцию и строить ее график.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Схема исследования функций

Процесс исследования функции состоит из нескольких этапов. Для наиболее полного представления о поведении функции и характере ее графика необходимо отыскать:

1) Область существования функции. Это понятие включает в себя и область значений и область определения функции.

2) Точки разрыва. (Если они имеются).

3) Интервалы возрастания и убывания.

4) Точки максимума и минимума.

5) Максимальное и минимальное значение функции на ее области определения.

6) Области выпуклости и вогнутости.

7) Точки перегиба.(Если они имеются).

8) Асимптоты.(Если они имеются).

9) Построение графика.

Применение этой схемы рассмотрим на примере.

Пример. Исследовать функцию и построить ее график.

Находим область существования функции. Очевидно, что областью определения функции является область (-¥; -1) È (-1; 1) È (1; ¥).

В свою очередь, видно, что прямые х = 1, х = -1 являются вертикальными асимптотами кривой.

Областью значений данной функции является интервал (-¥; ¥).

Точками разрыва функции являются точки х = 1, х = -1.

Находим критические точки.

Найдем производную функции

Критические точки: x = 0; x = - ; x = ; x = -1; x = 1.

Найдем вторую производную функции

.

Определим выпуклость и вогнутость кривой на промежутках.

-¥ < x < - - < x < -1 -1 < x < 0 0 < x < 1 1 < x < < x < ¥
y¢¢ < 0 y¢¢ < 0 y¢¢ > 0 y¢¢ < 0 y¢¢ > 0 y¢¢ > 0
кривая выпуклая кривая выпуклая кривая вогнутая кривая выпуклая кривая вогнутая кривая вогнутая

Находим промежутки возрастания и убывания функции. Для этого определяем знаки производной функции на промежутках.

-¥ < x < - - < x < -1 -1 < x < 0 0 < x < 1 1 < x < < x < ¥
y¢ > 0 y¢ < 0 y¢ < 0 y¢ < 0 y¢ < 0 y¢¢ > 0
функция возрастает функция убывает функция убывает функция убывает функция убывает функция возрастает

Видно, что точка х = - является точкой максимума, а точка х = является точкой минимума. Значения функции в этих точках равны соответственно 3 /2 и -3 /2.

Про вертикальные асимптоты было уже сказано выше. Теперь найдем наклонные асимптоты.

Итого, уравнение наклонной асимптоты – y = x.

Построим график функции.

ВАРИАНТЫ

Числовых данных параметров т и п определяются по первым буквам фамилии и полного имени.

    А-В Г-Е Ж-И К-М Н-П Р-Т У-Х Ц-Ш Щ-Э Ю-Я
Фамилия т                    
Имя п                    

ЗАДАНИЯ

Исследовать функцию и построить ее график.

а) ; б)

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Ознакомиться с теоретическими сведениями.

2. Выбрать свой вариант согласно первым буквам фамилии и полного имени.

3. Записать исходные данные.

4. Решить задания.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Применение первой производной к исследованию функции и построению графика.

2. Применение второй производной к исследованию функции и построению графика.


3.


4.

Практическая работа №10
Тема: Нахождение производной функции нескольких переменных.

Цель: Научиться находить частные производные и полный дифференциал функции нескольких переменных.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Частные производные первого порядка.

Пусть задана функция z = ƒ (х; у). Так как х и у – независимые переменные, то одна из них может изменяться, а другая сохранять свое значение. Дадим независимой переменной х приращение Δ х, сохраняя значение у неизменным. Тогда z получит приращение, которое называется частным приращением z по х и обозначается ∆ хz. Итак,

.

Аналогично получаем частное приращение z по у:

.

Полное приращение Δ z функции z определяется равенством

.

Если существует предел

,

то он называется частной производной функции z = ƒ (х; у) в точке М (х; у) по переменной х и обозначается одним из символов:

, , .

Аналогично определяется и обозначается частная производная от z = ƒ (х; у) по переменной у:

.

Таким образом, частная производная функции нескольких (двух, трех и больше) переменных определяется как производная функции одной из этих переменных при условии постоянства значений остальных независимых переменных. Поэтому частные производные функции ƒ (х; у) находят по формулам и правилам вычисления производных функции одной переменной (при этом соответственно х или у считается постоянной величиной).

Частные производные высших порядков.

Частные производные и называют частными производными первого порядка. Их можно рассматривать как функции от (х; у) є D. Эти функции могут иметь частные производные, которые называются частными производными второго порядка. Они определяются и обозначаются следующим образом:

;

;

;

;

Аналогично определяются частные производные 3-го, 4-го и т. д. порядков.

Частная производная второго или более высокого порядка, взятая по различным переменным, называетсясмешанной частной производной.

Полный дифференциал функции.

Пусть функция z = ƒ (х; у) определена в некоторой окрестности точки М (х; у) и имеет частные производные, то получаем формулу для вычисления полного дифференциала:

.

где и – частные дифференциалы функции z = ƒ (х; у).

Арифметические свойства и правила исчисления дифференциалов функции одной переменной сохраняются и для дифференциалов функции двух (и большего числа) переменных.

Производная в данном направлении. Градиент функции.

Производная функции z = ƒ (х; у) в точке М (х; у) в направлении вектора называется , где .

Если функция ƒ (х; у) дифференцируема, то производная в данном направлении вычисляется по формуле

,

где α, β – углы, образованные вектором с осями Ox и Oy.

Производная по направлению дает скорость изменения функции z в направлении вектора l.

Определение. Градиентом функции z = ƒ (х; у) в точке М (х; у) называется вектор, выходящий из точки M и имеющий своими координатами частные производные функции z:

; .

Градиент функции и производная в направлении вектора l связаны формулой . Градиент указывает направление наибыстрейшего роста функции в данной точке.

Уравнение касательной плоскости и нормали к поверхности в заданной точке.

Определение. Касательная плоскость к поверхности в точке М0 – это плоскость, содержащая касательные ко всем кривым, которые принадлежат данной поверхности и проходят через точку М0.

Если поверхность задана уравнением (т.е. неявно), то уравнение касательной плоскости к данной поверхности в точке можно найти по следующей формуле:

,

где – частные производные функции . При нахождении этих производных нужно руководствоваться правилами дифференцирования функции трёх переменных, то есть, при дифференцировании по какой-либо переменной, две другие буквы считаются константами

Определение. Нормаль к поверхности в точке М0 – это прямая, проходящая через данную точку перпендикулярно касательной плоскости.

– это вектор нормали касательной плоскости, и он же – направляющий вектор нормальной прямой. Составим канонические уравнения нормали по точке М0 и направляющему вектору : .

Экстремум функции двух переменных

Функция z = ƒ (х; у) имеет максимум (минимум) в точке М0 (х 0; у 0), если значение функции в этой точке больше (меньше), чем ее значение в любой другой точке М (х; у) некоторой окрестности точки M 0, то есть ƒ (х 0; у 0) > ƒ (х; у) (соответственно ƒ (х 0; у 0) < ƒ (х; у)) для всех точек М (х; у), принадлежащих этой окрестности. Максимум и минимум функции называется ее экстремумом. Точка M 0, в которой функция имеет экстремум, называется точкой экстремума.

Необходимое условие экстремума: если дифференцируемая функция z = ƒ (х; у) достигает экстремума в точке М0 (х 0; у 0), то ее частные производные первого порядка в этой точке равны нулю, то есть: и .





Поделиться с друзьями:


Дата добавления: 2016-04-03; Мы поможем в написании ваших работ!; просмотров: 499 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

2280 - | 2077 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.