Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Типы электродов, используемых в электрохимических методах анализа




Различают обратимые и необратимые электроды. При перемене направления электрического тока на обратимых электродах возникают реакции, противоположные по направлению, на необратимых - протекают реакции не обратные друг другу. Примером обратимого электрода служит медь в растворе, содержащем Cu2+. При прохождении тока в противоположных направлениях идут реакции:

Cu2+ + 2e ® Cu и Cu ® Cu2+ + 2e.

К необратимым электродам относится, например, медь в растворе кислоты. Перемена направления тока приводит к реакциям

2H+ + 2e ® H2 и Cu ® Cu2+ + 2e.

Из обратимых электродов могут быть составлены обратимые электрохимические цепи (пары, гальванические элементы).

3.2.1 Классификация обратимых электродов

Электроды первого рода - любой металл, погруженный в раствор соли этого же металла. Образует окислительно-восстановительную систему, в которой потенциал электрода определяется относительно концентрации катионов в растворе. К электродам первого рода относятся ртутные, серебряные, платиновые, водородные и другие. С учетом того, что активность твердого вещества при данной температуре постоянна и равна единице, электродный потенциал будет определяться выражением

jMz+,M = j0 + (RT/nF) ln aMz+,

Для электродов, обратимых относительно анионов

jA,Az- = j0 - (RT/nF) ln aAz-,

К электродам первого рода, обратимым относительно катиона, относится и газовый водородный электрод (Pt)H2,H+, так как на платиновом электроде при насыщении его водородом устанавливается равновесие:

+ «Н2 (адсорбированный) «Н2 (газ)

Электроды второго рода - система, в которой металл, покрытый слоем его труднорастворимого соединения (соли, оксида или гидроксида), находится в равновесии с раствором, содержащим избыток другой хорошо растворимой соли с таким же анионом. Потенциал такого электрода определяется концентрацией соответствующего аниона. К электродам второго рода относятся хлорид-серябряный, каломельный и сурьмяный электроды, часто применяемые в качестве электродов сравнения. Е0AgCl = +0.222 V; E0Hg2Cl2 = +0.268 V.

Окислительно-восстановительные электроды - инертное вещество с электронной проводимостью (например, платина), погруженное в раствор, содержащий вещества с различной степенью окисления Red и Ox. В качестве электродов этого типа чаще всего применяют платиновую или серебряную проволоку, помещенную в стеклянный корпус. Инертный электрод выполняет только функцию переноса электронов от восстановленной формы к окисленной. Потенциал электрода определяется выражением:

jOx,Red = j0Ox,Red + (RT/nF) ln(aOx/aRed),

Ионообменные электроды. Ионообменный электрод состоит из ионита и раствора. Потенциал на границе раздела фаз возникает за счет ионообменных процессов между ионитом и раствором. Допустим, ионит содержит ионы А+, способные к обмену с ионами М+ в растворе:

А+и + М+р ® А+р + М+и

Эта реакция характеризуется константой равновесия (обмена), которая определяет степень замещения ионов одного рода в ионите ионами другого рода из раствора:

Коб = aАр aМи/ aАи aМр

При установившемся равновесии обменного процесса поверхность ионита и раствор приобретают электрические заряды противоположного знака, на границе раздела ионит - раствор возникает двойной электрический слой, которому соответствует скачок потенциала. К этой группе относится и стеклянный электрод.

Потенциометрия

Основы метода

Потенциометрический метод анализа основан на измерении ЭДС обратимого гальванического элемента, величина которой определяется изменением равновесного потенциала индикаторного электрода. Величина потенциала зависит от природы электрода, концентрации и состава раствора, в который опущен электрод, характера химических реакций и температуры. Зависимость потенциала от активности ионов в растворе выражается уравнением Нернста:

(1)

При потенциометрическом анализе используют преобразованное уравнение (1). Принимая температуру равной 25°С, подставляя соответствующие значения R и T, используя вместо активности свободных ионов их концентрацию и с учетом коэффициента перехода от натуральных логарифмов к десятичным (2.3026) получим:

(2)

где Ex - величина электродного потенциала (В) на границе электрод-раствор при концентрации Сх (г-ион/л) ионов в растворе, Е0 - стандартный потенциал электрода (при концентрации ионов равной единице), n - заряд ионов. Множитель перед знаком логарифма называется крутизной электродной функции (S).

Стандартные потенциалы. Стандартным электродным потенциалом Е0 называется потенциал электрода, погруженного в раствор соответствующей соли с активностью ионов 1 г-экв/л, измеренный относительно стандартного водородного электрода.

Стандартный водородный электрод представляет собой платиновую пластинку или проволоку, покрытую платиновой чернью, насыщенной водородом при нормальном атмосферном давлении, и погруженную в раствор с активностью ионов водорода 1 г-экв. Водород, адсорбированный пластинкой, ведет себя по отношению к водородным ионам в растворе так же, как металлический электрод по отношению к своим ионам. Установившееся равновесии соответствует уравнению реакции

H2 «2H+ + 2e.

Потенциал водородного электрода условно принимают равным нулю, а любому другому электроду, измеренному по отношению к нему, приписывают потенциал, равный э.д.с. гальванического элемента. Заряд металлического электрода, стоящего в ряду активностей после водорода, будет отрицательным, до водорода - положительным.

Реальные потенциалы. В реальных условиях значения стандартных потенциалов не всегда могут служить для сравнения поведения систем. Анализируемые растворы обычно содержат кроме определяемых ионов, участвующих в окислительно-восстановительных реакциях, ионы или молекулы комплексообразователей, способных вступать во взаимодействие с окисленной или восстановленной формой вещества. Это будет оказывать влияние на величину окислительно-восстановительных потенциалов. Например, стандартный окислительно-восстановительный потенциал системы Fe3+/Fe2+ равен +0.77 В. В присутствии цианид-ионов процесс окисления-восстановления осложняется из-за образования комплексов

Fe(CN)63- + e = Fe(CN)64- и потенциал системы изменяется до +0.36.

Таким образом, реальный окислительно-восстановительный потенциал - потенциал, зависящий не только от свойств окислительно-восстановительной системы, но и от среды, в которой протекает реакция. В большинстве случаев его значение определяется только экспериментально. Значения реальных потенциалов для некоторых систем в присутствии кислот и комплексообразователей изменяются в больших интервалах и сильно отличаются от нормальных потенциалов. Введение комплексообразователей часто позволяет проводить реакции, которые не должны протекать в соответствии с нормальными потенциалами.

Реальные потенциалы необходимы при определении хода потенциометрического титрования. Вследствие недостаточной изученности реальных потенциалов на практике применяют теоретически вычисленные равновесные потенциалы.

Окислительно-восстановительная система характеризуется определенным значением потенциала, фиксируемым индикаторным электродом и зависящим от природы системы, от концентрации окисленной и восстановленной формы вещества:

()

где a,b и m - соответствующие стехиометрические коэффициенты у окислителя, восстановителя и иона водорода из уравнения реакции, [H+] - концентрация ионов водорода в анализируемом растворе.

Типы электродов

В потенциометрии применяют два типа электродов: индикаторные электроды и электроды сравнения.

Электроды сравнения

Электродом сравнения называется электрод, чей потенциал не зависит от природы и концентрации растворов, т.е. потенциал которого в процессе титрования постоянен и служит исключительно для определения потенциала индикаторного электрода. Последний выбирают в зависимости от типа реакций, лежащих в основе титрования, но во всех случаях его потенциал должен устанавливаться мгновенно соответственно концентрации титруемых ионов и не зависеть от наличия посторонних ионов.

В качестве электродов сравнения чаще всего используют стандартные электроды - электроды второго рода, характеризующиеся в условиях электродного процесса постоянной концентрацией ионов. К стандартным относятся: каломельный, хлоридсеребряный и некоторые другие.

Как правило, такие электроды представляют собой стеклянную или пластиковую трубку, в которую запрессована малорастворимая соль этого металла, залитая концентрированным раствором хорошо растворимой соли с таким же анионом, что и у малорастворимой соли. С исследуемым раствором такие электроды контактируют через асбестовую ткань.

Хлоридсеребряный электрод является системой, состоящей из стеклянного сосуда 1, внутри которого посещена серебряная проволока 2, покрытая хлоридом серебра 3 и опущенная в раствор хлорида калия 4. С исследуемым раствором электрод контактирует через асбестовую ткань 5. Таким образом, хлоридсеребряный электрод можно представить в виде Ag|AgCl, КCl||. Электродная реакция хлоридсеребряного электрода описывается уравнением AgCl + e = Ag0 + Cl-. Потенциал хлоридсеребряного электрода по отношению к стандартному водородному электроду равен =0.1988 В при 25°С.

Каломельный электрод представляет собой систему, состоящую из стеклянного сосуда 1, в который помещен стеклянный сосуд меньших размеров 2. Последний заполнен пастой 3 из Hg, Hg2Cl2 и KCl, в которую опущена амальгамированная платиновая проволока 4. Во внутреннем стеклянном сосуде имеется отверстие 5, через которое паста контактирует с насыщенным раствором KCl 6, залитым в сосуд 1. Для контакта с исследуемым раствором в сосуд 1 вставлена асбестовая ткань. Схематически каломельный электрод можно представить в виде системы Hg|Hg2Cl2, KCl||, а его электродная реакция описывается уравнением Hg2Cl2 + 2e = 2Hg0 + 2 Cl-. Потенциал каломельного электрода измерен относительно стандартного водородного электрода при различных температурах и концентрациях хлорида калия 0.1N, 1N и насыщенного раствора. Потенциал насыщенного каломельного электрода относительно СВЭ равен 0.2444 В при 25°С.

Если в процессе титрования потенциал любого индикаторного электрода остается постоянным, то такой электрод может использоваться как стандартный. Для этого достаточно поместить индикаторный электрод в раствор, одинаковый по составу с титруемым и соединенный с анализируемым раствором электролитическим ключом. Иногда для ускоренного потенциометрического титрования используют вольфрамовый, графитовый или карборундовый электроды, опуская их вместе с индикаторными электродами непосредственно в испытуемый раствор.

Индикаторные электроды.

Индикаторным называется электрод, потенциал которого, в соответствии с уравнением Нернста, зависит от концентрации ионов, которыми электрод обменивается с раствором. Этот электрод заменяет индикатор, используемый в условиях обычного титрования. Индикаторные электроды бывают двух типов - металлические и ионоселективные (мембранные).

Металлическими индикаторными электродами называются такие электроды, у которых на границе раздела фаз «металл-раствор» протекают реакции с участием электронов (электроды 1 рода). В качестве металлических индикаторных электродов используют платину, серебро, медь, кадмий и т.п. Т.е. такие металлы, которые способны давать обратимые полуреакции. Потенциалы этих металлов воспроизводимы и полностью отражают активности их ионов в растворе. Ряд металлов, например, алюминий, железо, никель, титан, хром не могут быть использованы в качестве индикаторных электродов, так как для них характерны невоспроизводимые потенциалы. Это объясняется образованием на поверхности таких электродов оксидных слоев, а также напряжениями и деформациями металла электродов.

С середины 60-х годов за рубежом, а с 70-х годов в нашей стране стала бурно развиваться новая область физико-химических методов анализа - ионометрия. Этот метод основан на разработке и практическом использовании различного рода ионоселективных электродов (ИСЭ).

Ионоселективными или мембранными, называются такие электроды, у которых на границе раздела фаз «электрод-раствор электролита» протекают реакции ионного обмена. Все ИСЭ в основе своей конструкции имеют ионочувствительную мембрану, проницаемую для конкретного типа ионов. Для их создания используют широкий спектр таких электродноактивных веществ, как моно- и поликристаллы, жидкие и твердые иониты, природные и синтетические циклические и ациклические органические соединения, селективно связывающие те или иные ионы. Ионоселективные электроды должны обладать высокой избирательностью по отношению к определенному иону, т.е. реагировать только на изменение концентрации (активности) данного иона даже в присутствии относительно большого содержания других ионов. Лишь в этом случае электрод называют селективным.

Мембрана - основной компонент любого ИСЭ. Она разделяет внутренний раствор с постоянной концентрацией определяемого иона и исследуемый раствор. Одновременно мембрана служит средством электролитического контакта между ними. Скачек потенциала, возникающий на границе мембрана-раствор электролита и связанный с активностью (концентрацией) определяемого иона в анализируемом растворе служит аналитическим сигналом. Различают две основные группы ионоселективных электродов:

1) Ионоселективные электроды с твердой мембраной, в структуре которой закреплены ионогенные группы или фиксированные ионы. Электроды этой группы могут быть гомогенными с моно- или поликристаллической или стеклянной мембраной, или гетерогенными, в которых кристаллическое вещество или твердый ионообменник внедрены в полимерную инертную матрицу (полистирол, силиконовый каучук и др.).

2) Ионоселективные электроды с жидкими мембранами, представляющими собой раствор электродно-активного вещества (ионообменного, хелатного и т.п.) в органическом растворителе, не смешивающимся с водой. Органическую фазу отделяют от водного раствора пористой инертной мембраной. Активное вещество мембраны является солью большого органического аниона(катиона) и иона противоположного знака, к которому чувствителен (обратим) электрод.

К этой группе примыкают пленочные или матричные электроды на основе жидких ионитов или другого типа не смешивающихся с водой растворов, внедренных в полимерную матрицу. Например, электроды на основе солей (перхлората, иодида, бромида, хлорида, нитрата, ацетата) четвертичных аммониевых оснований, растворенных в эфирах фосфорной, фталиевой и других кислот, внесенных в поливинилхлоридную матрицу. По механизму действия такие электроды аналогичны электродам с жидкими мембранами.

Среди ионоселективных электродов с твердой мембраной наибольшее распространение получил стеклянный электрод, селективный в отношении ионов H+ и предназначенный для определения рН.

Стеклянный электрод - представляет собой устройство из припаянного на конце толстостенной стеклянной трубки (1) стеклянного шарика (2) диаметром 15-20 мм с толщиной стенок 0.06-0.1 мм, изготовленного из специального стекла с большим содержанием щелочных металлов - лития или натрия. Шарик заполнен 0.1 м раствором HCl, насыщенным AgCl (3). В раствор погружена серебряная проволока (4), покрытая хлоридом серебра и являющаяся токоотводом. К концу токоотвода припаивается провод.

Перед началом работы стеклянный электрод вымачивается в 0.1 м растворе HCl в течение 8 час, иначе он не будет селективен по отношению к ионам водорода. На поверхности стеклянного электрода устанавливается сложное равновесие, связанное со взаимной диффузией ионов водорода из раствора в стекло и ионов натрия или лития из стекла в раствор. На поверхности шарика возникает потенциал, величина которого изменяется соответственно разности рН между внутренним и внешним растворами. Таким образом, потенциал стеклянного электрода обусловлен обменом ионов щелочных металлов, находящихся в стекле, с ионами водорода из раствора и не связан с переходом электронов.

Электроды с твердыми кристаллическими мембранами. Кристалл нерастворимой в воде соли является ионопроводящей фазой, если один из двух составляющих его ионов способен перемещаться по дефектам в кристаллической решетке под действием электрического поля. Пластинка такого монокристалла может быть мембраной электрода, специфичного к одному из ионов соли. Кристаллические мембраны обладают чрезвычайно высокой селективностью, так как перенос электрического заряда в кристалле происходит за счет дефектов кристаллической решетки, при котором вакансии занимаются свободными соседними ионами.

Ионоселективный электрод с твердой мембраной состоит из мембраны, корпуса электрода, внутреннего раствора (обычно 0.1 м растворы определяемого иона и хлорида калия), внутреннего полуэлемента Ag|AgCl, и припаянного проводника. В качестве твердых мембран могут использоваться такие соединения, как LaF3, AgCl-Ag2S, CuS. В этих электродах в процессе переноса заряда участвует один из ионов кристаллической решетки мембраны, имеющий, как правило, наименьший ионный радиус и наименьший заряд.

Электрод с жидкой мембраной отличается от стеклянного электрода или электрода с твердой мембраной тем, что анализируемый раствор отделен от раствора с известной и постоянной активностью тонким слоем не смешивающейся с водой органической жидкости. Применение электродов с жидкими мембранами основано на том, что на границе раздела фаз между анализируемым раствором и несмешивающейся с ним жидкостью возникает потенциал, обусловленный ионным обменом между двумя этими жидкостями. Любой ион, способный войти в фазу мембраны, может перемещаться в виде комплексной соли, в результате чего селективность электрода зависит от ионообменных процессов на границе мембрана-раствор. В качестве электроактивных соединений в электродах с жидкой мембраной могут быть использованы хелаты металлов, ионные ассоциаты органических катионов и анионов, комплексы с нейтральными переносчиками.

Пленочные электроды. Конструкция таких электродов аналогична конструкции электродов с твердой мембраной, только вместо последней в корпус электрода вставлена пластифицированная мембрана, а внутрь электрода залит раствор сравнения. В качестве токоотвода используют хлорсеребряный полуэлемент. Чувствительный элемент таких электродов состоит из электродоактивного компонента, поливинилхлорида и растворителя (пластификатора).





Поделиться с друзьями:


Дата добавления: 2016-03-28; Мы поможем в написании ваших работ!; просмотров: 5317 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2396 - | 2210 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.