Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Уравнения длинной линии синусоидального тока в комплексной форме




79 Вторичные параметры (коэффициент распространения и волновое сопротивление). При распространении электромагнитной энергии по длинной кабельной линии напряжение между проводниками и ток в проводниках не остаются постоянными, а меняются по абсолютному значению и по фазе. Отношения между током и напряжением в любой точке цепи и током и напряжением в начале цепи зависят от двух параметров – волнового сопротивления Zв и коэффициента распространения γ, которые носят название вторичных параметров передачи. Они относятся к основным показателям, характеризующим электрические свойства цепи.

Волновое сопротивление определяется отношением напряжения к току в любой точке цепи и выражается через первичные параметры по формуле

__________________

Zв = √ (R + iωL) / (G + iωC).

Волновое сопротивление выражается в Омах, если активное сопротивление R выражено в Ом/км, индуктивность L – в Г/км, емкость С – в Ф/км и проводимость G – в См/км. В общем виде волновое сопротивление является комплексной величиной. Для всех однородных цепей R/L > G/C, поэтому угол волнового сопротивления отрицателен. При R << ωL и G << ωL, т.е. для частот свыше 5…10 кГц, волновое сопротивление определяется по следующей упрощенной формуле ____

Zв = √ L / C)

Коэффициент распространения γ характеризует изменение мощности электромагнитной волны при распространении ее по линии и изменение фазы напряжения и тока вдоль линии. Коэффициент распространения – комплексная величина, причем действительная составляющая α определяет затухание, т.е. уменьшение напряжения и тока на единицу длины цепи, а мнимая составляющая β характеризует величину изменения фазы напряжения и тока на единицу длины линии. Коэффициент распространения через первичные параметры выражается формулой _________________

γ = α + iβ = √ (R + iωL) · (G + iωC)

80 Уравнение длинны линии в гиперболически функциях. Линией без потерь называется линия, у которой первичные параметры и равны нулю. В этом случае, как было показано ранее, и . Таким образом,

,

откуда . Раскроем гиперболические функции от комплексного аргумента :

Тогда для линии без потерь, т.е. при , имеют место соотношения:

и .

Таким образом, уравнения длинной линии в гиперболических функциях от комплексного аргумента для линии без потерь трансформируются в уравнения, записанные с использованием круговых тригонометрических функций от вещественного аргумента: ;

.

81 Длинная лилия как четырехполюсник напряжения и токи в начале и в конце линии связаны между собой соотношениями

Эти уравнения соответствуют уравнениям симметричного четырехполюсника, коэффициенты которого ; и ; при этом условие выполняется. Указанное означает, что к длинным линиям могут быть применены элементы теории четырехполюсников, и, следовательно, как всякий

 

82 Волны в линии Длинная линия — регулярная линия передачи, длина которой превышает длину волны (λ) колебаний, распространяющихся в линии. Характерной особенностью длинных линий является проявление интерференции двух волн, распространяющихся навстречу друг другу. Одна из этих волн создается генератором электромагнитных колебаний, подключенным к линии, и называется падающей. Другая волна может возникать из-за отражения падающей волны от нагрузки, подключенной к противоположному концу линии, и называется отраженной. Отраженная волна распространяется в направлении, обратном падающей волне. Все разнообразие процессов, происходящих в длинной линии, определяется амплитудно-фазовыми соотношениями между падающей и отраженной волнами. Различают три режима работы линии:

1. режим бегущей волны; [

2. режим стоячей волны; [10]

3. режим смешанных волн.

Режим бегущей волны характеризуется наличием только падающей волны, распространяющейся от генератора к нагрузке. Отраженная волна отсутствует. Мощность, переносимая падающей волной, полностью выделяется в нагрузке. В этом режиме B U = 0, | Г | = 0, k бв = k св = 1[10].

Режим стоячей волны характеризуется тем, что амплитуда отраженной волны равна амплитуде падающей B U = A U т.е. энергия падающей волны полностью отражается от нагрузки и возвращается обратно в генератор. В этом режиме, | Г | = 1, k св = , k бв = 0[10].

В режиме смешанных волн амплитуда отраженной волны удовлетворяет условию 0 < B U < A U т.е. часть мощности падающей волны теряется в нагрузке, а остальная часть в виде отраженной волны возвращается обратно в генератор. При этом 0 < | Г | < 1, 1 < k св < , 0 < k бв < 1

 

83 Фазовая скорость. Длина волны. Фазовая скорость определяется из условия, что , откуда следует, что .

Длина волны l равна расстоянию, на котором фаза волны изменяется на 2p, т. е. , откуда . На расстоянии длины волны z =l зату­хание волны составит раз.

 

 

84 Неискажающая линия. Пусть сигнал, который требуется передать без искажений по линии, является периодическим, т.е. его можно разложить в ряд Фурье. Сигнал будет искажаться, если для составляющих его гармонических затухание и фазовая скорость различны, т.е. если последние являются функциями частоты. Таким образом, для отсутствия искажений, что очень важно, например, в линиях передачи информации, необходимо, чтобы все гармоники распространялись с одинаковой скоростью и одинаковым затуханием, поскольку только в этом случае, сложившись, они образуют в конце линии сигнал, подобный входному.

Идеальным в этом случае является так называемая линия без потерь, у которой сопротивление и проводимость равны нулю.

Действительно, в этом случае

,

т.е. независимо от частоты коэффициент затухания и фазовая скорость

.

Однако искажения могут отсутствовать и в линии с потерями. для получения и , что обеспечивает отсутствие искажений, необходимо, чтобы , т.е. чтобы волновое сопротивление не зависело от частоты. , при (4)

есть вещественная константа.

Линия, параметры которой удовлетворяют условию (4), называется линией без искажений.

85 Длинная линия без потерь. В линии без потерь погонные параметры R 1 = 0 и G 1 = 0. Поэтому для коэффициента распространения γ и волнового сопротивления W получим:

С учетом этого выражения для напряжения и тока примут вид:

 

86 Стоячие воины в длинной линии без потерь. Бегущая волна отсутствует (т.е. волна стоит). Перемещения энергии нет. Перемещение энергии будет отсутствовать в следующих случаях: - при холостом ходе - при КЗ

- при чисто реактивной нагрузке.

Рассмотрим режим холостого хода:

 

где - амплитуда синусоиды.

Точки, в которых напряжение и ток все время остаются равными 0, называются узлами. Точки, в которых напряжение и ток достигают максимальных значений, называются пучностями. На любом расстоянии от конца линии U и I сдвинуты на 900.

87. Переходные процессы в длинных линиях без потерь. В цепях с сосредоточенными параметрами переходные процессы проте­кают одно­временно во всех направлениях цепи с одинаковой скоростью затуха­ния.

В цепях с распределенными параметрами переходной процесс, начав­шийся в какой-либо точке цепи, распространяется на остальные элементы в виде волн, которые распро­страняются вдоль цепи с конечной скоростью v. Эта скорость близка к скорости света км/c в воздушных линиях и v < c для кабельных линий. По мере распространения вдоль линии волна изменяет свою форму, поэтому переходной процесс в разных точках ли­нии выглядит по-раз­ному. Таким образом, переходной процесс в цепи с распределенными парамет­рами протекает в функции двух переменных – пространства и время. В высоковольтных линиях электропередачи переходные процессы возни­кают при раз­личных коммутациях, а так же от грозовых явлений в атмосфере. При переходом процессе на отдельных участках линии могут возникнуть пере­напряжения, нередко приводящие к пробою изоляции, или большие токи, вызы­вающие механические разрушения конструкций

 

88. Расчет падающих и отраженных волн при расчете переходных процессов. Пусть линия с волновым сопротивлением в момент t = 0 под­ключается к источнику ЭДС или с нулевыми или с ненулевыми внутренними параметрами .

1 Источник постоянной ЭДС e(t) = E с нулевыми внутренними парамет­рами

После замыкания рубильника в момент t =0 возникнут падающие волны с прямоуголь­ным фронтом: Во всех точках линии, пройденных фронтом волны, устанавливается постоян­ный режим (), u (t) =E, . Для точек линии, куда фронт не дошел (), u =0 и i =0

2, Источник синусоидальной ЭДС с нулевыми внут­ренними па­раметрами

Напряжение и ток в начале линии после замыкания рубильника устано­вятся мгно­венно и будут равны:

, .

Таким образом, для расчета падающих волн в линии , необходимо выполнить расчет переходного процесса в схеме замещения для начала линии и в получен­ных выражениях заменить переменную t на .

После того как падающие волны и достигнут конца линии, при возникнут отраженные волны и законы распределения напряжения и тока вдоль линии будут определяться наложением этих волн:





Поделиться с друзьями:


Дата добавления: 2016-03-27; Мы поможем в написании ваших работ!; просмотров: 1424 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2239 - | 2072 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.