Cеминар: Применение производной при исследовании функции
Основные вопросы
1. Признаки монотонности функции.
2.Необходимое условие существования экстремума.
3. Критические точки на экстремум.
4. Достаточные условия существования экстремума.
5. Наибольшее и наименьшее значение функции на отрезке.
6. Выпуклость и вогнутость графика функции.
7. Точки, критические на перегиб.
8. Необходимое и достаточное условия существования перегиба.
9. Асимптоты графика функции.
Задания для семинара
№1 Доказать монотонность функции на всей числовой оси:
а) , б) ,
в) , г) .
№2 При каких а функции монотонны всюду:
а) , б) .
№3 Найти интервалы монотонности и экстремумы функций:
а) , б) ,
в) , г) .
№4 С помощью 2-го достаточного условия существования экстремума исследовать поведение функции в указанной
точке х о:
а) ,
б) ,
в) ,
г) .
№5 Найти экстремумы, точки перегиба. Построить график.
а) , б) .
№6 Определить выпуклость или вогнутость графика функции
в окрестности указанных точек:
а) ,
б) .
№7 Найти асимптоты и построить график: а) ,
б) .
№8 Найти наибольшее и наименьшее значение функции на заданном отрезке:
а) , б) .
Задания для самостоятельной работы
№9 Доказать монотонность функции на всей числовой оси:
а) , б) , в) .
№10 При каких а функции монотонны всюду:
а) , б) .
№11 Найти интервалы монотонности и экстремумы функций:
а) , б) ,
в) .
№12 С помощью 2-го достаточного условия существования экстремума исследовать поведение функции в указанной
точке х о:
а) ,
б) ,
в) ,
г) .
№ 13 Найти экстремумы, точки перегиба. Построить график.
а) , б) .
№ 14 Определить выпуклость или вогнутость графика функции
в окрестности указанных точек:
а) ,
б) .
№ 15 Найти асимптоты и построить график:
а) , б) .
№16 Найти наибольшее и наименьшее значение функции на заданном отрезке: а) , б) .
Ответы
2. а) ; б) при , при .
3. а) при , при ,
;
б) ;
в)
;
г) )
4. а) , б) , в) нет экстремума, г) х о не является критической точкой.
5. а) ,
; б) , , .
6. а) - выпуклый график, -вогнутый; б) - выпуклый график,
-вогнутый. 7. а) - вертикальные асимптоты, наклонная асимптота, ; б) горизонтальная асимптота, в) .
8. а) ; б) .
10. a) , в) .
11. а) , б) , в) .
12. а) , б) , в) нет экстремума, г) х о не является критической точкой.
13. а) нет точек экстремума,
б)
14. а) - выпуклый график, -вогнутый; б) - вогнутый график,
- выпуклый.
15. а) горизонтальные асимптоты, ;
б) .
16. а) , б)
Семинар: Неопределенный интеграл
Вопросы к семинару:
1. Первообразная и неопределенный интеграл.
2.Таблица интегралов. Вычисление неопределенных интегралов с помощью таблицы интегралов.
3. Нахождение интегралов методом компенсирующего множителя или введением под знак дифференциала.
4. Нахождение интегралов с помощью замены.
5. Метод интегрирования по частям.
Таблица простых интегралов
(х – независимая переменная)
Таблица интегралов сложных функций
Формула интегрирования по частям
таблица выбора функции U(x)
Правила применения таблицы:
1. Если подынтегральное выражение является произведением функций из разных строк таблицы, то за U принимается функция, стоящая в таблице выше. Оставшееся выражение принимается за dV. При этом, выбирая U, следует всегда заботиться о том, чтобы dV было легко интегрируемым.
2. Если же подынтегральное выражение будет произведением функций из одной строки, то за U можно принять любую из этих функций. При этом интегрирование по частям, как правило, применяют дважды и получают равенство - уравнение, в котором неизвестным является искомый интеграл.
Задания для семинара
№1 Вычислить с помощью таблицы интегралов
а) , б) ,
в) , г) .
№2 Найти интегралы методом компенсирующего множителя или введением под знак дифференциала
а) , б) , в) , г) ,
д) ,
е) ,
ж) ,
з) ,
и) .
№3 (Устно) Найти интегралы
а) , б) , в) , г) ,
д) ,
е) ,
ж) , з) .
№4 Найти интегралы с помощью замены переменной:
а) , б) , в) , г) .
№5 Найти интегралы методом интегрирования по частям:
а) , б) , в) , г) . д) е) , ж)