Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Три закона внешнего фотоэффекта




I. Закон Столетова: при фиксирован­ной частоте падающего света число фото­электронов, вырываемых из катода в еди­ницу времени, пропорционально интенсив­ности света (сила фототока насыщения пропорциональна энергетической осве­щенности Eе катода).

II. Максимальная начальная ско­рость (максимальная начальная кинети­ческая энергия) фотоэлектронов не за­висит от интенсивности падающего све­та, а определяется только его частотой n, а именно линейно возрастает с увели­чением частоты.

III. Для каждого вещества существует «красная граница» фотоэффекта, т. е. ми­нимальная частота n0 света (зависящая от химической природы вещества и состояния его поверхности), при которой свет лю­бой интенсивности фотоэффекта не вызы­вает.

Эффект Комптона

Эффектом Комптона называется упру­гое рассеяние коротковолнового электро­магнитного излучения (рентгеновского и g-излучений) на свободных (или сла­босвязанных) электронах вещества, со­провождающееся увеличением длины во­лны. Этот эффект не укладывается в рам­ки волновой теории, согласно которой длина волны при рассеянии изменяться не должна: под действием периодического поля световой волны электрон колеблется с частотой поля и поэтому излучает рассе­янные волны той же частоты.

Объяснение эффекта Комптона дано на основе квантовых представлений о при­роде света. Если считать, как это делает квантовая теория, что излучение имеет корпускулярную природу, т. е. представля­ет собой поток фотонов, то эффект Комп­тона — результат упругого столкновения рентгеновских фотонов со свободными электронами вещества (для легких ато­мов электроны слабо связаны с ядрами атомов, поэтому их можно считать сво­бодными). В процессе этого столкновения фотон передает электрону часть своих энергии и импульса в соответствии с за­конами их сохранения.

Рассмотрим упругое столкновение двух частиц (рис.291) — налетающего фотона, обладающего импульсом p g=hn/c и энергией eg=hn, с покоящимся свобод­ным электроном (энергия покоя W0 = m0c2; m0—масса покоя электрона). Фотон, столкнувшись с электроном, передает ему часть своей энергии и импульса и изменяет направление движения (рассеивается). Уменьшение энергии фотона означает уве­личение длины волны рассеянного излуче­ния. Пусть импульс и энергия рассеянного фотона равны p'g=hn'/c и e'g=hn'. Электрон, ранее покоившийся, приобретает им­пульс pe=mv, энергию W=mc2 и при­ходит в движение — испытывает отдачу. При каждом таком столкновении выпол­няются законы сохранения энергии и им­пульса.

Согласно закону сохранения энергии,

W0+eg=W + e'g, (206.2) а согласно закону сохранения импульса, p g= p e+ p 'g. (206.3)

Подставив в выражении (206.2) значения величин и представив (206.3) в соответст­вии с рис. 291, получим

m0c2+hn=mc2+hn', (206.4)

Масса электрона отдачи связана с его скоростью v соотношением m= m0/Ö(1-(v/с)2) (см. (39.1)). Возведя уравнение (206.4) в квадрат, а затем вы­читая из него (206.5) и учитывая (39.1), получим

т0с2 (n-n') = hnn'(1-cosq).

Поскольку n=c/l, n'=c/l' и Dl=l'-l, получим

Выражение (206.6) есть не что иное, как полученная экспериментально Комптоном формула (206.1). Подстановка в нее зна­чений h, m 0 и с дает комптоновскую длину волны электрона lC =h/(m0c)=2,426 пм.

Из приведенных рассуждений следует также, что эффект Комптона не может наблюдаться в видимой области спектра, поскольку энергия фотона видимого света сравнима с энергией связи электрона с атомом, при этом даже внешний элект­рон нельзя считать свободным.

Эффект Комптона наблюдается не только на электронах, но и на других заряженных частицах, например прото­нах, однако из-за большой массы протона его отдача «просматривается» лишь при рассеянии фотонов очень высоких энергий.

Как эффект Комптона, так и фотоэф­фект на основе квантовых представлений обусловлены взаимодействием фотонов с электронами. В первом случае фотон рассеивается, во втором — поглощается. Рассеяние происходит при взаимодействии фотона со свободным электроном, а фото­эффект — со связанными электронами. Можно показать, что при столкновении фотона со свободным электроном не мо­жет произойти поглощения фотона, так как это находится в противоречии с за­конами сохранения импульса и энергии. Поэтому при взаимодействии фотонов со свободными электронами может наблю­даться только их рассеяние, т. е. эффект Комптона.





Поделиться с друзьями:


Дата добавления: 2016-03-27; Мы поможем в написании ваших работ!; просмотров: 691 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент всегда отчаянный романтик! Хоть может сдать на двойку романтизм. © Эдуард А. Асадов
==> читать все изречения...

2935 - | 2642 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.