Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


MatLab как научный калькулятор




9.2.1. Командное окно

После вызова MatLabиз среды Windows на экране появляется командное окно среды MatLab (рисунок 9.1.)

Это окно является основным в MatLab. В нем отображаются символы команд, которые набираются пользователем на клавиатуре, результаты выполнения этих команд, текст исполняемой программы, а также информация об ошибках выполнения программы, распознанных системой.

Признаком того, что программа MatLab готова к восприятию и выполнению очередной команды, является наличие в последней строке текстового поля знака приглашения (), после которого стоит мигающая вертикальная черта.

В верхней части окна (под заголовком) размещена строка меню, в которой находятся меню, назначение которых общеизвестно (см., например, [10]).

9.2.2. Операции с числами

Ввод действительных чисел с клавиатуры производится по общим правилам, принятым для языков программирования высокого уровня:

- для определения дробной части мантиссы числа применяется десятичная точка;

- десятичный показатель числа записывается в виде целого числа после предварительной записи символа e;

- между записью мантиссы числа и символом e не должно быть никаких символов.

Простейшие арифметические действия:

- “+” – сложение; “-” – вычитание; “*” – умножение; “/” – деление слева направо; “\” - деление справа налево; “^” – возведение в степень.

Вывод промежуточной информации в командное окно подчинятся следующим правилам:

- если запись оператора не заканчивается символом “;”, результат действия этого оператора сразу же выводится в командное окно;

- если запись оператора заканчивается символом “;”, результат его действия не отображается в командном окне;

- если оператор не содержит знака присвоения “=”, то значение результата присваивается специальной системной переменной ans;

- полученное значение можно использовать в последующих операторах вычислений под именем ans; при этом следует помнить, что значение переменной ans изменяется после действия очередного оператора без знака присвоения;

- в общем случае форма вывода результата в командное окно имеет вид:

.

В системе MatLab имеется несколько имен переменных, которые используются системой и входят в состав зарезервированных (Эти переменные можно использовать в математических выражениях):

- - мнимая единица ();

- - число (сохраняется в виде 3.141592653589793);

- - обозначение машинной бесконечности ;

- - обозначение неопределенного результата (например );

- - результат последней операции без знака присвоения.

Ввод значений комплексного числа.

Язык системы MatLab, в отличие от многих языков программирования высокого уровня, содержит очень простую в пользовании встроенную арифметику комплексных чисел. Большинство элементарных математических функций построено таким образом, что аргументы предполагаются комплексными числами, а результаты также формируются как комплексные числа.

Для обозначения мнимой единицы в MatLab зарезервировано два имени -i и –j. Ввод с клавиатуры значения комплексного числа производится путем записи в командном окне строки вида

9.2.3. Простейшие операции с векторами и матрицами

 
 

Под вектором в MatLab понимается одномерный массив, а под матрицей – двумерный массив. По умолчанию предполагается, что любая заданная переменная является вектором или матрицей. Например, отдельно заданное число программа воспринимает как матрицу размером (1*1), а вектор-строку с N элементами – как матрицу размером (1*N).

Ввод векторов и матриц

 
 

Исходные значения векторов можно задавать с клавиатуры путем поэлементного ввода. Для этого в строке следует вначале указать имя вектора, потом поставить знак присвоения “=”, далее – открывающуюся квадратную скобку, а за ней ввести заданные значения элементов вектора, отделяя их пробелами или запятыми. Завершается строка закрывающейся квадратной скобкой.

Например, ввод вектора-стоки V=[1.2 –0.3 5], задает вектор, содержащей три элемента (рисунок 9.2)

 
 

Длинный вектор можно вводить частями, которые затем объединять с помощью операции объединения в строку: V=[V1 V2] (рисунок 9.3)

Вектор-столбец вводится аналогично, но значения элементов в перечне отделяются знаком “; ”.

Ввод значений элементов матрицы осуществляется в квадратных скобках по строкам. При этом элементы строки матрицы отделяются друг от друга знаком “; ” (рисунок 9.4):

9.2.4. Некоторые функции прикладной численной математики

Операции с полиномами

Полином как функция определяется выражением

.

В MatLab полином задается и хранится в виде вектора, элементами которого являются коэффициенты полинома от до

Умножение полиномов сводится к построению расширенного вектора коэффициентов по заданным векторам коэффициентов полиномов-сомножителей. Данная операция называется сверткой векторов

В MatLab эту операцию осуществляет функция .

Аналогично, функция осуществляет деление полинома на .

Пример.

Система MatLab имеет функцию , которая вычисляет вектор, элементы которого являются корнями заданного полинома .

Пусть требуется найти корни полинома

Найдем корни, используя функцию :

Обратная задача – построение вектора коэффициентов полинома по заданному вектору его корней – осуществляется функцией

Здесь - заданный вектор значений корней.

Пример.

Аппроксимация и интерполяция данных

Система MatLab предоставляет удобные процедуры для аппроксимации и интерполяции данных измерений.

Полиномиальная аппроксимация данных измерений, которые сформированы как некоторый вектор Y, при некоторых значениях аргумента, которые образую вектор X такой же длины, что и вектор Y, осуществляется процедурой . Здесь n порядок аппроксимирующего полинома.

Пример.

Пусть имеем массив значений аргумента

x = [1 2 3 4 5 6 7 8],

а массив соответствующих значений измеренной величины

y = [-1.1 0.2 0.5 0.8 0.7 0.6 0.4 0.1].

Тогда, применяя указанную функцию при разных значениях порядка аппроксимирующего полинома, получим:

Это значит, что заданную зависимость можно аппроксимировать кривыми различных порядков, что и демонстрируется кривыми на рисунке 9.5.

9.2.5. Построение простейших графиков

Вывод графиков в системе MatLab является настолько простой и удобной процедурой, что ею можно пользоваться даже при вычислениях в режиме калькулятора.

Основной функцией, обеспечивающей построение графиков на экране дисплея, является функция .

Общая форма обращения к этой процедуре такова:

.

Здесь - заданные векторы, элементам которых являются массивы значений аргумента и функции , соответствующих первой кривой графика; - массивы значений аргумента и функции второй кривой и т.д. При этом предполагается, что значения аргумента откладываются вдоль горизонтальной оси, а значения функции – вдоль вертикальной оси. Переменные являются символьными (их указание необязательно). Каждая из них может содержать три специальных символа, которые определяют тип линии, соединяющей отдельные точки графика, тип точки графика и цвет линии. Если переменные не указаны, то тип по умолчанию - отрезок прямой, тип точки – пиксель, а цвет устанавливается в таком порядке: синий, зеленый, красный, голубой, фиолетовый, желтый, черный и белый.

Графики в MatLab всегда выводятся в отдельном графическом окне, которое называется фигурой.

 
 

По приведенной форме график изображается без сетки.

Для нанесения сетки необходимо добавить функцию .

Ценной особенностью графиков, построенных в MatLab, является то, что сетка координат всегда отвечает целым шагам изменения, что делает графики “читабельными”.

Пример.

Пусть требуется вывести график функции на промежутке от до с шагом .

Результат выглядит следующим образом (рисунок 9.6).

 

 

 





Поделиться с друзьями:


Дата добавления: 2015-11-23; Мы поможем в написании ваших работ!; просмотров: 1977 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

2281 - | 2079 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.