Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Методы замены переменной в определенном интеграле




а) Необходимо вычислить интеграл ,

где f(x) непрерывная функция на [a,b].

Перейдем к новой переменной t, полагая . Пусть , кроме того, при изменении t от a до b значения функции не выходят за пределы сегмента [a,b]. Предположим, что функция непрерывно дифференцируема на промежутке [a,b], то справедлива следующая формула замены переменной

.

Пример 35. Вычислить

Решение. Преобразуем подкоренное выражение, выделив полный квадрат

.

Введем новую переменную: тогда ,

или

Найдем пределы интегрирования новой переменной t:

если , то

если , то .

Воспользуемся формулой замены переменной в определенном интеграле, получим

Заметим, что в данном случае при применении формулы замены переменной отпадает необходимость возвращения к старой переменной х по сравнению с неопределенным интегралом. Это вполне объяснимо, ибо определенный интеграл есть некоторое постоянное число, в то время как неопределенный интеграл от той же самой функции есть некоторая функция.

б) Часто вместо замены переменной употребляют обратную замену переменной . На конкретном примере покажем, как это делается.

Покажем это на конкретном примере.

Пример 36. Вычислить .

Решение. Пусть , тогда

Если то если , то

Следовательно,

 

Формула интегрирования по частям в определенном интеграле

 

Пусть и - непрерывные функции вместе со своими первыми производными на [a,b], тогда справедлива формула интегрирования по частям:

Пример 37. Вычислить интеграл .

Решение. Применим полученную формулу

Подробнее о методах интегрирования в определенном интеграле см.[1] с.399-403.

 

Несобственные интегралы

 

Определение определенного интеграла, его свойства и методы интегрирования рассматривались в предположении, что промежуток интегрирования [a,b] конечен и функция f(x) непрерывна на нем.

Иногда приходится отказываться от одного или обоих этих предположений. В этом случае мы приходим к понятию несобственного интеграла.

 

 

Несобственные интегралы с бесконечными

Пределами интегрирования

 

Рассмотрим функцию , непрерывную на бесконечном промежутке .

Несобственным интегралом от функции f(x) по промежутку называется :

.

Если указанный предел существует и конечен, то несобственный интеграл с бесконечным пределом интегрирования называется сходящимся, в противном случае - расходящимся.

Если на и , то данный интеграл представляет собой площадь бесконечной криволинейной трапеции, ограниченной кривой , прямой и бесконечным интервалом .

 
 

 


Аналогично определяется несобственный интеграл на промежутке :

а на интервале определяется формулой

где с - любое действительное число.

Если сравнить две криволинейные трапеции на рис.3.1, то конечность или бесконечность их соответствующих несобственных интегралов зависит от скорости убывания функции и при .

Так, например, сходится при и расходится при .

В этом легко убедится, вычислив , если .

Если , то при , поэтому - расходится, следовательно, и площадь соответствующей криволинейной трапеции бесконечна.

- несобственный интеграл сходящийся, следовательно, площадь криволинейной трапеции, ограниченной линиями и бесконечным промежутком , является конечной и равна 1.

Пример 38. Исследовать на сходимость несобственный интеграл .

Решение. Воспользуемся определением несобственного интеграла с бесконечным нижним пределом интегрирования и далее - формулой интегрирования по частям

.

Несобственный интеграл сходится.

Пример 39. Вычислить несобственный интеграл или установить его расходимость .

Решение. Воспользуемся определением несобственного интеграла с бесконечными пределами интегрирования. Полагаем .

Признак сравнения. Пусть в промежутке функции f(x) и g(x) непрерывны и . Если сходится, то сходится и интеграл . Если интеграл расходится, то и также расходится.

Замечание. Аналогичное утверждение верно для несобственных интегралов и по другим бесконечным пределам интегрирования.

Пример 40. Исследовать на сходимость несобственный интеграл .

Решение. Проведем сравнительный анализ подынтегральной функции при .

.

Но сходится, т.к. (см. рассуждения выше). Следовательно, по признаку сравнения сходится и данный интеграл.

 

 





Поделиться с друзьями:


Дата добавления: 2015-11-23; Мы поможем в написании ваших работ!; просмотров: 1686 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Так просто быть добрым - нужно только представить себя на месте другого человека прежде, чем начать его судить. © Марлен Дитрих
==> читать все изречения...

2463 - | 2219 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.