Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Понятие о фазовой плоскости




Обычное описание движения системы с одной степенью свободы в виде зависимости координаты от времени x=x(t) не является единственно возможным. В ряде случаев, особенно при изучении нелинейных механических колебаний, определенными достоинствами обладает представление движения на фазовой плоскости.

Состояние системы в любой фиксированный момент времени t определяется парой соответствующих значений x и и может быть представлено изображающей (фазовой) точкой в плоской декартовой системе координат x, v, если откладывать по оси абсцисс координату x, а по оси ординат – скорость v. Такая плоскость называется фазовой.

В процессе движения рассматриваемой системы величины x и v изменяются и, соответственно, меняется положение изображающей точки на фазовой плоскости. Геометрическое место изображающих точек для данного движения называется фазовой траекторией.

Для построения фазовой траектории при заданном законе движения x=x(t) нужно путем дифференцирования образовать выражение скорости v =x(t), а затем исключить время из двух уравнений: x=x(t), .

Функция v = v (x) и описывает фазовую траекторию данного движения.

Фазовая плоскость особенно удобна для представления колебательных процессов, когда координата и скорость не выходят за известные пределы; поэтому вся картина движения даже в течение неограниченного времени занимает ограниченную часть фазовой плоскости.

Совокупность фазовых траекторий, которая описывает все возможные движения данной системы, называется фазовой диаграммой (фазовым портретом) данной системы.

Для свободных гармонических колебаний , а . Исключая из этих выражений время t получаем

Это уравнение эллипса (рис.11). Его полуоси зависят от амплитуды и круговой частоты.

Рис.11

 

Свободные колебания в поле постоянной силы.

На материальную точку кроме упругой силы, действует сила постоянная по величине и направлению.

Рис.12

 

Обозначим ее Fст (рис.12), тогда дифференциальное уравнение движения точки примет вид:

Начальные условия имеют вид:

при t=0:

Это неоднородное дифференциальное уравнение. Его решение складывается из решения однородного дифференциального уравнения и частного решения неоднородного дифференциального уравнения

Решение имеет вид:

,

,

Если начало отсчета координаты сдвинуть на (рис.13), тогда в новой системе отсчета решение будет иметь вид:

- амплитуда колебаний;

Рис.13

 

Параллельное включение упругих элементов.

Масса закреплена с помощью двух упругих элементов расположенных параллельно (рис.14).

Рис.14

 

Сместим массу на расстояние x.

.

Результирующая жесткость упругих элементов расположенных параллельно равна сумме жесткостей этих элементов.

 





Поделиться с друзьями:


Дата добавления: 2015-11-23; Мы поможем в написании ваших работ!; просмотров: 1062 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если президенты не могут делать этого со своими женами, они делают это со своими странами © Иосиф Бродский
==> читать все изречения...

2487 - | 2350 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.