Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Метод проектирования на оси координат




Запишем уравнение (1) в проекциях на оси координат:

Σx=0: mv=m2∙v2x,

Σy=0: 0=-m1v1+m2∙v2y.

откуда выразим проекции скорости второго осколка:

По теореме Пифагора находим скорость

тангенс угла наклона вектора скорости к оси х

 

Пример 11. Человек массой m1 находится на неподвижной платформе массой m2. С какой угловой скоростью ω начнет вращаться платформа, если человек будет двигаться по окружности радиусом r вокруг оси вращения? Скорость движения человека относительно платформы равна v 0. Радиус платформы R. Считать платформу однородным диском, а человека - материальной точкой.

Рис.6.6

 

Решение. В начальном состоянии (состояние I) система тел “человек + платформа” неподвижна. При движении человека со скоростью v0 относительно платформы против часовой стрелки платформа начинает вращаться по часовой стрелке (состояние II) с угловой скоростью ω.

На систему действуют внешние силы тяжести и реакции со стороны оси, направленные вертикально (трением в оси пренебрегаем), их момент равен нулю. Поэтому можно применит закон сохранения момента импульса.

В состоянии I момент импульса системы равен нулю:

LI=0.

В состоянии II момент импульса человека (материальной точки) равен по модулю L1=m1v1r, где v1 - скорость человека относительно Земли, и направлен вертикально вверх. Момент импульса платформы (сплошного диска) равен по модулю L2=J2∙ω и направлен вертикально вниз. Суммарный момент импульса в проекции на ось, направленную вертикально вверх, равен:

LII=L1-L2=m1v1r-J2∙ω.

Здесь J2 - момент инерции сплошного диска,

По закону сохранения момента импульса LI=LII имеем:

m1v1r-J2∙ω=0. (1)

Выразим скорость v 1 человека относительно Земли через скорость v 0 человека относительно платформы. Поскольку линейная скорость точек платформы, находящихся на расстоянии r от оси вращения равна v =ωr, то v 1= v 0-ωr.

Перепишем (1) в виде

откуда получим выражение для угловой скорости:

 

Пример 12. Два резиновых диска с шероховатой поверхностью вращаются вокруг осей, лежащих на одной вертикали, причем поверхности дисков параллельны. Первый диск обладает моментом инерции J1 и угловой скоростью ω1, второй - J2 и ω2. Определить угловую скорость дисков при падении верхнего диска и соединении его с нижним, а также изменение их суммарной кинетической энергии.

Решение. Два диска образуют систему взаимодействующих тел. На них действуют внешние силы тяжести и реакции со стороны оси, а также внутренняя сила трения. Поскольку моменты внешних сил относительно оси вращения равны нулю, можно применить закон сохранения момента импульса.

В начальном состоянии момент импульса системы равен

LI=J1ω1±J2ω2.

Знак “плюс” применяется в случае, когда диски вращаются в одном направлении, знак “минус” - в противоположных направлениях.

При соединении вследствие силы трения угловая скорость дисков становится одинаковой, а момент импульса системы принимает значение:

LII=(J1+J2)ω.

По закону сохранения импульса LI=LII получаем выражение

J1ω1±J2ω2=(J1+J2)ω,

откуда угловая скорость после соединения оказывается равной

Кинетическая энергия дисков в начальном состоянии составляет

в конечном состоянии –

Изменение суммарной кинетической энергии системы, равное количеству выделившегося тепла, составит

W = W I- W II.

Подставляя в последнее выражение формулы (2) и (3) и учитывая (1), окончательно получим:

Знак “минус” применяется в случае, когда диски вращаются в одном направлении, знак “плюс” - в противоположных направлениях.

 

Пример 13. Момент импульса тела относительно неподвижной оси изменяется по законам: а) б) . Как изменяется момент сил, действующих на тело, в каждом случае?

Решение. Основное уравнение динамики вращательного движения кроме формы M=Jε может иметь вид Поэтому для ответа на заданный вопрос можно продифференцировать выражения момента импульса, заданные в условии задачи. В случае “а” поэтому с течением времени вращающий момент уменьшается. В случае “б” , с течением времени вращающий момент возрастает.

 

Вопросы для самопроверки

- Что называется количеством движения механической системы?

- Как формулируется теорема об изменении количества движения системы?

- Запишите математическое выражение теоремы об изменении количества движения механической системы в дифференциальной и интегральной форме.

- В каком случае количество движения механической системы не изменяется?

- Как определяется импульс переменной силы за конечный промежуток времени? Что характеризует импульс силы?

- Чему равны проекции импульса постоянной и переменной силы на оси координат?

- Чему равен импульс равнодействующей?

- Как изменяется количество движения точки, движущейся равномерно по окружности?

- Что называется количеством движения механической системы?

- Чему равно количество движения маховика, вращающегося вокруг неподвижной оси, проходящей через его центр тяжести?

- Сформулируйте теоремы об изменении количества движения материальной точки и механической системы в дифференциальной и конечной формах. Выразите каждую из этих четырех теорем векторным уравнением и тремя уравнениями в проекциях на оси координат.

- При каких условиях количество движения механической системы не изменяется? При каких условиях не изменяется его проекция на некоторую ось?

- Почему происходит откат орудия при выстреле?

- Могут ли внутренние силы изменить количество движения системы или количество движения ее части?

- Что называют телом переменной массы?

- Кем созданы основы механики тел переменной массы?

- Какой вид имеет основное уравнение динамики точки переменной массы? В каком случае оно имеет вид основного уравнения динамики точки постоянной массы?

- От каких факторов зависит скорость свободного движения ракеты?

- Зависит ли конечная скорость ракеты от времени сгорания топлива?

- Что называется кинетическим моментом механической системы? Какова его размерность?

- Чему равен кинетический момент вращающегося твердого тела относительно оси вращения?

- Как выражается производная по времени от кинетического момента системы относительно точки?

- В каких случаях кинетический момент системы относительно точки и относительно оси остается постоянным?

- Что называют кинетическим моментом механической системы относительно центра или оси?

- Сформулируйте теорему об изменении кинетического момента механической системы относительно центра и относительно оси?

- При каких условиях остается постоянным кинетический момент механической системы относительно центра и при каких – кинетический момент относительно оси?

- Какова кинетическая интерпретация теоремы об изменении кинетического момента механической системы относительно центра?

- Почему трудно прыгнуть на берег с легкой лодки, а такой же прыжок с парохода легко осуществить?

- Покоящийся шар получает центральный удар от другого такого же шара. Когда первый шар приобретает большую скорость - при упругом или неупругом ударе?

 





Поделиться с друзьями:


Дата добавления: 2015-11-23; Мы поможем в написании ваших работ!; просмотров: 819 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

В моем словаре нет слова «невозможно». © Наполеон Бонапарт
==> читать все изречения...

2187 - | 2150 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.