По стандартным программам производится вычисление как основных совокупностей статистик, представленных нами выше, так и дополнительных, не включенных в наш обзор. Иногда получением этих характеристик исследователь и ограничивается, но чаще совокупность этих статистик представляет собой лишь блок, входящий в более широкое множество показателей изучаемой выборки, получаемых по более сложным программам. В том числе по программам, реализующим приводимые ниже методы статистического анализа.
Корреляционный анализ
Сводится к вычислению коэффициентов корреляции в самых разнообразных соотношениях между переменными. Соотношения задаются исследователем, а переменные равнозначны, т. е., что является причиной, а что следствием, установить через корреляцию невозможно. Кроме тесноты и направленности связей метод позволяет установить форму связи (линейность, нелинейность) [6, 27]. Надо заметить, что нелинейные связи не поддаются анализу общепринятыми математическими и статистическими методами. Данные, относящиеся [25] к нелинейным зонам (например, в точках разрыва связей, в местах скачкообразных изменений), характеризуют через содержательные описания, воздерживаясь от формально-количественного их представления [17, с. 17-23]. Иногда для описания нелинейных явлений удается применить непараметрические математико-статистические методы и модели. Например, используется математическая теория катастроф [62, с. 523-525].
Дисперсионный анализ
В отличие от корреляционного анализа этот метод позволяет выявлять не только взаимосвязь, но и зависимости между переменными, т. е. влияние различных факторов на исследуемый признак. Это влияние оценивается через дисперсионные отношения. Изменения изучаемого признака (вариативность) могут быть вызваны действием отдельных известных исследователю факторов, их взаимодействием и воздействиями неизвестных факторов. Дисперсионный анализ позволяет обнаружить и оценить вклад каждого из этих влияний на общую вариативность исследуемого признака. Метод позволяет быстро сузить поле влияющих на изучаемое явление условий, выделив наиболее существенные из них. Таким образом, дисперсионный анализ — это «исследование влияния переменных факторов на изучаемую переменную по дисперсиям» [80, с. 340]. В зависимости от числа влияющих переменных различают одно-, двух-, многофакторный анализ, а в зависимости от характера этих переменных — анализ с постоянными, случайными или смешанными эффектами [18, 80, 87]. Дисперсионный анализ широко применяется при планировании эксперимента.
Факторный анализ
Метод позволяет снизить размерность пространства данных, т. е. обоснованно уменьшить количество измеряемых признаков (переменных) за счет их объединения в некоторые совокупности, выступающие как целостные единицы, характеризующие изучаемый объект. Эти составные единицы и называют в данном случае факторами, от которых надо отличать факторы дисперсионного анализа, представляющие [26] собой отдельные признаки (переменные). Считается, что именно совокупность признаков в определенных комбинациях может характеризовать многие явления или закономерность их развития, тогда как по отдельности или в других комбинациях эти признаки не дают информации. Как правило, факторы не видны «на глаз», скрыты от непосредственного наблюдения. Особенно продуктивен факторный анализ в предварительных исследованиях, когда необходимо выделить в первом приближении скрытые закономерности в исследуемой области. Основой анализа является матрица корреляций, т. е. таблицы коэффициентов корреляции каждого признака со всеми остальными (принцип «все со всеми»). В зависимости от числа факторов в корреляционной матрице различают однофакторный (по Спирмену), бифакторный (по Холзингеру) и многофакторный (по Терстону) анализы. По характеру связи между факторами метод делится на анализ с ортогональными (независимыми) и с облическими (зависимыми) факторами. Существуют и иные разновидности метода [9, 31, 46, 57, 85]. Весьма сложный математический и логический аппараты факторного анализа часто затрудняют выбор адекватного задачам исследования варианта метода. Тем не менее популярность его в научном мире растет с каждым годом.
Регрессионный анализ
Метод позволяет изучать зависимость среднего значения одной величины от вариаций другой (других) величины. Специфика метода заключается в том, что рассматриваемые величины (или хотя бы одна из них) носят случайный характер. Тогда описание зависимости распадается на две задачи: 1) выявление общего вида зависимости и 2) уточнение этого вида путем вычисления оценок параметров зависимости. Для решения первой задачи стандартных методов не существует, и здесь производится визуальный анализ корреляционной матрицы в сочетании с качественным анализом природы исследуемых величин (переменных). Это требует от исследователя высокой квалификации и эрудиции. Вторая задача по сути есть нахождение аппроксимирующей кривой. Чаще всего эта аппроксимация осуществляется с помощью математического метода наименьших квадратов [11, 23, 27].
Таксономический анализ
Метод представляет собой математический прием группировки данных в классы (таксоны, кластеры) таким образом, чтобы объекты, входящие в один класс, были более однородны по какому-либо признаку по сравнению с объектами, входящими в другие классы. В итоге появляется возможность определить в той или иной метрике расстояние между изучаемыми объектами и дать упорядоченное описание их взаимоотношений на количественном уровне [26, 52, 84]. В силу недостаточной проработанности критерия эффективности и допустимости кластерных процедур данный метод применяется обычно в сочетании с другими способами количественного анализа данных. С другой стороны, и сам таксономический анализ используется как дополнительная страховка надежности результатов, полученных с использованием других количественных методов, в частности, факторного анализа. Суть кластерного анализа позволяет рассматривать его как метод, явно совмещающий количественную обработку данных с их качественным анализом. Поэтому причислить его однозначно к разряду количественных методов, видимо, не правомерно. Но поскольку процедура метода по преимуществу математическая и результаты могут быть представлены численно, то и метод в целом будем относить к категории количественных.
Шкалирование
Шкалирование в еще большей степени, чем таксономический анализ, совмещает в себе черты количественного и качественного изучения реальности. Количественный аспект шкалирования состоит в том, что в его процедуру в подавляющем большинстве случаев входят измерение и числовое представление данных. Качественный аспект шкалирования выражается в том, что, во-первых, оно позволяет манипулировать не только количественными данными, но и данными, не имею- [28] щими единиц измерения, а во-вторых, включает в себя элементы качественных методов (классификации, типологизации, систематизации).
Еще одной принципиальной особенностью шкалирования, затрудняющей определение его места в общей системе научных методов, является совмещение в нем процедур сбора данных и их обработки. Можно даже говорить о единстве эмпирических и аналитических процедур при шкалировании. Не только в конкретном исследовании трудно указать на последовательность и разнесенность этих процедур (они часто совершаются одновременно и совместно), но и в теоретическом плане не удается обнаружить стадиальную иерархию (невозможно сказать, что первично, а что вторично).
Третий момент, не позволяющий однозначно отнести шкалирование к той или иной группе методов, — это его органическое «врастание» в специфические области знания и приобретение им наряду с признаками общенаучного метода признаков узкоспецифических. Если другие методы общенаучного значения (например, наблюдение или эксперимент) можно довольно легко представить как в общем виде, так и в конкретных модификациях, то шкалирование на уровне всеобщего без потери необходимой информации охарактеризовать весьма непросто. Причина этого очевидна: совмещение в шкалировании эмпирических процедур с обработкой данных. Эмпирика конкретна, математика абстрактна, поэтому срастание общих принципов математического анализа со специфическими приемами сбора данных дает указанный эффект.
Осознав все эти факторы, мы все же помещаем шкалирование в разряд количественных методов обработки данных, поскольку на практике шкалирование встречается в двух ситуациях. Первая — это построение шкал, а вторая — их использование. В случае с построением все упомянутые особенности шкалирования проявляются в полной мере. В случае же использования они отходят на второй план, поскольку применение готовых шкал (например, «стандартных» шкал при тестировании) предполагает просто сравнение- [29] с ними показателей, полученных на этапе сбора данных. Кроме того, формальное построение шкал, как правило, выносится за пределы непосредственных измерений и сбора данных об объекте, т. е. основные шкалообразующие действия математического характера проводятся после сбора данных, что сопоставимо с этапом их обработки.
В самом общем смысле шкалирование есть способ познания мира через моделирование реальности с помощью формальных (в первую очередь, числовых) систем. Применяется этот способ практически во всех сферах научного познания (в естественных, точных, гуманитарных, социальных, технических науках) и имеет широкое прикладное значение.
Наиболее строгим определением представляется следующее: шкалирование — это процесс отображения по заданным правилам эмпирических множеств в формальные. Под эмпирическим множеством понимается любая совокупность реальных объектов (людей, животных, явлений, свойств, процессов, событий), находящихся в определенных отношениях друг с другом. Эти отношения могут быть представлены четырьмя типами (эмпирическими операциями): 1) равенство (равно — не равно); 2) ранговый порядок (больше — меньше); 3) равенство интервалов; 4) равенство отношений.
Под формальным множеством понимается произвольная совокупность символов (знаков, чисел), связанных между собой определенными отношениями, которые соответственно эмпирическим отношениям описываются четырьмя видами формальных (математических) операций: 1) «равно — не равно» (= ≠); 2) «больше — меньше» (> <); 3) «сложение — вычитание» (+ -); 4) «умножение — деление» (*:).
При шкалировании обязательным условием является взаимооднозначное соответствие между элементами эмпирического и формального множеств. Это означает, что каждому элементу первого множе- [30] ства должен соответствовать только один элемент второго, и наоборот. При этом взаимооднозначное соответствие типов отношений между элементами обоих множеств (изоморфизм структур) не обязательно. В случае изоморфности этих структур производится так называемое прямое (субъективное) шкалирование, при отсутствии изоморфизма производится косвенное (объективное) шкалирование.
Итогом шкалирования является построение шкал (лат. scala — 'лестница'), т. е. некоторых знаковых (числовых) моделей исследуемой реальности, с помощью которых можно эту реальность измерить. Таким образом, шкалы являются измерительными инструментами. Общее представление обо всем многообразии шкал можно получить из работ [21, 22], где приведена их классификационная система и даны краткие описания каждого вида шкал.
Отношения между элементами эмпирического множества и соответствующие допустимые математические операции (допустимые преобразования) обуславливают уровень шкалирования и тип получаемой шкалы (по классификации С. Стивенса). Первому, наиболее простому типу отношений (= ≠) соответствуют наименее информативные шкалы наименований, второму (> <) — шкалы порядка, третьему (+ -) — шкалы интервалов, четвертому (*:) — самые информативные шкалы отношений.
Одномерное шкалирование — это процесс отображения эмпирического множества в формальное по одному критерию. Получаемые одномерные шкалы отображают либо отношения между одномерными эмпирическими объектами (или одними и теми же свойствами многомерных объектов), либо изменения одного свойства многомерного объекта. Реализуется одномерное шкалирование с помощью методов и прямого (субъективного), и косвенного (объективного) шкалирования. [32]
Под многомерным шкалированием понимается процесс отображения эмпирического множества в формальное одновременно по нескольким критериям. Многомерные шкалы отражают либо отношения между многомерными объектами, либо одновременные изменения нескольких признаков одного объекта. Процесс многомерного шкалирования в отличие от одномерного характеризуется большей трудоемкостью второго этапа, т. е. формализации данных. В связи с этим привлекается мощный статистико-математический аппарат, например, кластерный или факторный анализы, входящие неотъемлемой частью в методы многомерного шкалирования.
Исследование проблем многомерного шкалирования связано с именами Ричардсона и Торгерсона, предложивших его первые модели. Начало разработкам методов неметрического многомерного шкалирования положил Шепард. Наиболее распространенный и впервые теоретически обоснованный алгоритм многомерного шкалирования предложил Краскал. Обобщение сведений по многомерному шкалированию провел М. Дейвисон [25].
Косвенное, или объективное, шкалирование — это процесс отображения эмпирического множества в формальное при взаимном несоответствии (отсутствие изоморфизма) между структурами этих множеств. Прямое, или субъективное, шкалирование представляет собой процесс отображения эмпирического множества в формальное при взаимооднозначном соответствии (изоморфизм) структур этих множеств.
В заключение обзора метода шкалирования надо указать на проблему его соотношения с измерением. На наш взгляд, эта проблема обусловлена отмеченными выше особенностями шкалирования: 1) совме- [34] щением в нем эмпирических процедур сбора данных и аналитических процедур обработки данных; 2) единством количественного и качественного аспекта процесса шкалирования; 3) сочетанием общенаучности и узкопрофильности, т. е. «срастанием» общих принципов шкалирования со специфическими процедурами конкретных методик.
Часть исследователей в явном или неявном виде отождествляет понятия «шкалирование» и «измерение» [24, 32, 35, 58, 90, 92, 95]. На эту точку зрения особенно сильно «работает» авторитет С. Стивенса, который измерение определял как «приписывание числовых форм объектам или событиям в соответствии с определенными правилами» и тут же указывал, что подобная процедура ведет к построению шкал [77, с. 20, с. 51]. Но поскольку процесс разработки шкалы есть процесс шкалирования, то в итоге получаем, что измерение и шкалирование — одно и то же. Противоположная позиция состоит в том, что с измерением сопоставляется только метрическое шкалирование, связанное с построением интервальных и пропорциональных шкал [79, 88, 91].
Представляется, что вторая позиция строже, поскольку измерение предполагает количественное выражение измеряемого, а следовательно, наличие метрики. Острота дискуссии может быть снята, если измерение понимать не как исследовательский метод [24, 35], а как инструментальное сопровождение того или иного метода, в том числе шкалирования.
Кстати, метрология (наука об измерениях) в понятие «измерение» включает как его обязательный атрибут средства измерения [12, 48]. Для шкалирования же (по крайней мере, для неметрического шкалирования) измерительные средства необязательны.