МЕТОДЫ ОБРАБОТКИ ДАННЫХ
Обработка данных направлена на решение следующих задач:
1) упорядочивание исходного материала, преобразование множества данных в целостную систему сведений, на основе которой возможно дальнейшее описание и объяснение изучаемых объекта и предмета;
2) обнаружение и ликвидация ошибок, недочетов, пробелов в сведениях; 3) выявление скрытых от непосредственного восприятия тенденций, закономерностей и связей; 4) обнаружение новых фактов, которые не ожидались и не были замечены в ходе эмпирического процесса; 5) выяснение уровня достоверности, надежности и точности собранных данных и получение на их базе научно обоснованных результатов.
Обработка данных имеет количественный и качественный аспекты. Количественная обработка есть манипуляция с измеренными характеристиками изучаемого объекта (объектов), с его «объективизированными» во внешнем проявлении свойствами. Качественная обработка — это способ предварительного проникновения в сущность объекта путем выявления его неизмеряемых свойств на базе количественных данных.
Количественная обработка направлена в основном на формальное, внешнее изучение объекта, качественная — преимущественно на содержательное, внутреннее его изучение. В количественном исследовании доминирует аналитическая составляющая познания, что отражено и в названиях количественных методов обработки эмпирического материала, которые содержат категорию «анализ»: корреляционный анализ, факторный анализ и т. д. Основным итогом количественной обработки является упорядоченная совокупность «внешних» показателей объекта (объектов). Реализуется количественная обработка с помощью математико-статистических методов. [16]
В качественной обработке доминирует синтетическая составляющая познания, причем в этом синтезе превалирует компонент объединения и в меньшей степени присутствует компонент обобщения. Обобщение — прерогатива следующего этапа исследовательского процесса— интерпретационного. В фазе качественной обработки данных главное заключается не в раскрытии сущности изучаемого явления, а пока лишь в соответствующем представлении сведений о нем, обеспечивающем дальнейшее его теоретическое изучение. Обычно результатом качественной обработки является интегрированное представление о множестве свойств объекта или множестве объектов в форме классификаций и типологий. Качественная обработка в значительной мере апеллирует к методам логики.
Противопоставление друг другу качественной и количественной обработок (а, следовательно, и соответствующих методов) довольно условно. Они составляют органичное целое. Количественный анализ без последующей качественной обработки бессмыслен, так как сам по себе он не в состоянии превратить эмпирические данные в систему знаний. А качественное изучение объекта без базовых количественных данных в научном познании — немыслимо. Без количественных данных качественное познание — это чисто умозрительная процедура, не свойственная современной науке. В философии категории «качество» и «количество», как известно, объединяются в категории «мера». Единство количественного и качественного осмысления эмпирического материала наглядно проступает во многих методах обработки данных: факторный и таксономический анализы, шкалирование, классификация и др. Но поскольку традиционно в науке принято деление на количественные и качественные характеристики, количественные и качественные методы, количественные и качественные описания, примем количественные и качественные аспекты обработки данных как самостоятельные фазы одного исследовательского этапа, которым соответствуют определенные количественные и качественные методы.
Качественная обработка естественным образом выливается в описание и объяснение изучаемых явлений, что составляет уже следующий уровень их изучения, осуществляемый на стадии интерпретации результатов. Количественная же обработка полностью относится к этапу обработки данных. [17]
Количественные методы
Процесс количественной обработки данных имеет две фазы: первичную и вторичную.
Методы первичной обработки
Первичная обработка нацелена на упорядочивание информации об объекте и предмете изучения, полученной на эмпирическом этапе исследования. На этой стадии «сырые» сведения группируются по тем или иным критериям, заносятся в сводные таблицы, а для наглядности представляются графически. Все эти манипуляции позволяют, во-первых, обнаружить и ликвидировать ошибки, совершенные при фиксации данных, и, во-вторых, выявить и изъять из общего массива нелепые данные, полученные в результате нарушения процедуры обследования, несоблюдения испытуемыми инструкции и т. п. Кроме того, первично обработанные данные, представая в удобной для обозрения форме, дают исследователю в первом приближении представление о характере всей совокупности данных в целом: об их однородности — неоднородности, компактности — разбросанности, четкости — размытости и т. д. Эта информация хорошо читается на наглядных формах представления данных и связана с понятиями «распределение данных».
К основным методам первичной обработки относятся: табулирование, т. е. представление количественной информации в табличной форме, и построение диаграмм (рис. I), гистограмм (рис. 2), полигонов распределения (рис. 3) и кривых распределения (рис. 4). Диаграммы отражают распределение дискретных данных, остальные графические формы используются для представления распределения непрерывных данных.
От гистограммы легко перейти к построению частотного полигона распределения, а от последнего — к кривой распределения. Частотный полигон строят, соединяя прямыми отрезками верхние точки центральных осей всех участков гистограммы. Если же вершины участков соединить с помощью плавньгх кривых линий, то получится кривая распределения первичных результатов. Переход от гистограммы к кривой распределения позволяет путем интерполяции находить те величины исследуемой переменной, которые в опыте не были получены. [18]