Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Статистические взаимосвязи и их анализ




 

Понятие о статистической зависимости. Исходя из известного положения исторического материализма о всеобщей взаимозависимо­сти и взаимообусловленности явлений общественной жизни, социо­лог-марксист не может ограничиться изучением отдельно взятого явления изолированно от других процессов и событий, а должен стремиться по возможности охватить весь комплекс явлений, отно­сящихся к тому или иному социальному процессу и изучить суще­ствующие между ними зависимости.

Различают два вида зависимостей: функциональные (примером которых могут служить законы Ньютона в классической физике) и статистические.

Закономерности массовых общественных явлений складываются под влиянием Множества причин, которые действуют одновременно и взаимосвязанно. Изучение такого рода закономерностей в стати­стике и называется задачей о статистической зависимости. В этой задаче полезно различать два аспекта: изучение взаимозависимости между несколькими величинами и изучение зависимости одной или большего числа величин от остальных. В основном первый аспект связан с теорией корреляции (корреляционный анализ), второй — с теорией регрессии (регрессионный анализ). Основное внимание в этом параграфе уделено изучению взаимозависимостей нескольких признаков, а основные принципы регрессионного анализа рассмотре­ны очень кратко.

В основе регрессионного анализа статистической зависимости ряда признаков лежит представление о форме, направлении и тес­ноте (плотности) взаимосвязи.

В табл. 7 приведено эмпирическое распределение заработной пла­ты рабочих в зависимости от общего стажа работы (условные

данные) для выборки в 25 человек, а на рис. 9 эти численные данные представлены в виде так называемой диаграммы рассеяния, или разброса. Вообще говоря, визуально не всегда можно определить, су­ществует или нет значимая взаимосвязь между рассматриваемыми признаками и насколько она значима, хотя очень часто уже на диаграмме просматривается общая тенденция в изменении значе­ний признаков и направление связи между изучаемыми признаками. Уравнение регрессии. Статистическая зависимость одного или большего числа признаков от остальных выражается спомощью уравнений регрессии. Рассмотрим две величины х и у, такие, например, как на рис. 9. Зафиксируем какое-либо значение пере­менной х, тогда у принимает целый ряд значений. Обозначим у среднюю величину этих значений у при данном фиксированном х. Уравнение, описывающее зависимость средней величины ух от x называется уравнением регрессии у по х:

Аналогичным образом можно дать геометрическую интерпрета­цию регрессионному уравнению22

Уравнение регрессии описывает числовое соотношение между величинами, выраженное в виде тенденции к возрастанию (или убыванию) одной переменной величины при возрастании (убывании) другой. Эта тенденция проявляется на основе некоторого чис­ла наблюдений, когда из общей, массы выделяются, контролируют­ся, измеряются главные, решающие факторы.

Характер связи взаимодействующих признаков отражается в ее форме. В этом отношении полезно различать линейную и нелиней­ную регрессии. На рис. 10, 11 приведены графики линейной и кри­волинейной форм линий регрессии и их диаграммы разброса для случая двух переменных величин.

Направление и плотность (теснота) линейной связи между дву­мя переменными измеряются с помощью коэффициента корреляции.

Меры взаимозависимости для интервального уровня измерения. Наиболее широко известной мерой связи служит коэффициент кор­реляций Пирсона (или, как его иногда называют, коэффициент кор­реляции, равный произведению моментов). Одно из важнейших предположений, на котором покоится использование коэффициента г, состоит в том, что регрессионные уравнения для изучаемых переменных имеют линейную форму23, т. е.

где у — среднее арифметическое для переменной у; х — среднее арифметическое для переменной х; b1 и b2 - некоторые коэффи­циенты.

Поскольку вычисление коэффициента корреляции и коэффици­ентов регрессии b1 и b2 проводится по схожим формулам, то, вычисляя r, получаем сразу же и приближенные регрессионные модели24.

 

Выборочные коэффициенты регрессии и корреляции вычисляются по формулам

Здесь s2x —дисперсия признака х; s2x дисперсия признака у.Величина sxy, называется ковариацией х и у.

Расчет r для не с группированных данных. Для вычислительных целей эти выражения в случае не сгруппированных данных можно переписать в следующем виде:

Рассчитаем коэффициент корреляции и коэффициенты регрессии для данных табл. 7:

Тогда уравнение регрессии имеет вид

Линии регрессии y = F(x) изображены на рис. 10-. Отсюда вид­но, что между заработной платой и общим стажем работы сущест­вует прямая зависимость: по мере увеличения общего стажа рабо­ты на предприятии растет и заработная плата. Величина коэффи­циента корреляции довольно большая и свидетельствует о положи­тельной связи между переменными величинами. Следует отметить, что вопрос о том, какую переменную в данном случае принимать в качестве зависимой величины, а какую — в качестве независимой, исследователь решает на основе качественного анализа и профес­сионального опыта. Коэффициент корреляции по определению яв­ляется симметричным показателем связи: rxy = ryx. Область возмож­ного изменения коэффициента корреляции г лежит в пределах от +1 до —1.

Вычисление r для сгруппированных данных. Для сгруппирован­ных данных примем ширину интервала по каждой переменной за единицу (если по какой-либо переменной имеются неодинаковые размеры интервала, то возьмем из них наименьший). Выберем так­же начало координат для каждой переменной где-нибудь возле среднего значения, оцененного на глаз.

Для условных данных, помещенных в табл. 8, за нулевую точ­ку отсчета выберем значение у, равное 64, а по x — значение 134,5.

Тогда коэффициент корреляции определяется по следующей формуле:

 

Для вышеприведенного примера порядок вычислений представлен в табл. 9. Для определения Snijaxby вычислим последовательно все произведения частоты в каждой клетке таблицы на ее коор­динаты. Так

В соответствии с формулой вычисляем

Таким образом, величина связи достаточно велика, как, впрочем, и следовало ожидать на основе визуального анализа таблицы.

Статистическая значимость r. После вычисления коэффициента корреляции возникает вопрос, насколько показателен этот коэффи­циент и не обусловлена ли зависимость, которую он фиксирует, случайными отклонениями. Иначе говоря, необходимо проверить гипотезу о том, что полученное значение r значимо отличается от 0.

Если гипотеза H0 (r = 0) будет отвергнута, говорят, что величи­на коэффициента корреляции статистически значима (т. е. эта ве­личина не обусловлена случайностью) при уровне значимости a.

Для случая, когда п < 50, применяется критерий t, вычисляе­мый по формуле

Распределение t дано в табл. В приложения.

Если п > 50, то необходимо использовать Z-критерий

В табл. А приложения приведены значения величины ZKp для соответствующих a.

Вычислим величину Z для коэффициента корреляции по табл. 7 (вычисление проделаем лишь для иллюстрации, так как число на­блюдений п — 25 и нужно применять критерий t). Величина r (см. табл. 7) равна 0,86. Тогда

Для уровня значимости a = 0,01 ZKp = 2,33 (см. табл. А прило­жения).

Поскольку Z > ZKp, мы должны констатировать, что коэффици­ент корреляции г = 0,86 значим и лишь в 1 % случаев может ока­заться равным нулю. Аналогичный результат дает и проверка по критерию t для а = 0,01 (односторонняя область); tкр— 2,509, tвы­борочное равно 8,08.

Другой часто встречающейся задачей, является проверка равен­ства на значимом уровне двух коэффициентов корреляции. i = г2 при заданном уровне а, т. е. различия между r1 и r2 обусловлены лишь колебаниями выборочной совокупности.

Критерий для проверки значимости следующий:

где значения zrj и zr находят по табл. Д приложения для r1 и r2.

Значения ZКp определяют по табл. А. приложения аналогично вышеприведенному примеру.

Частная и множественная регрессия и корреляция. Ранее нами было показано, как можно по опытным данным найти зависимость одной переменной от другой, а именно как построить уравнение регрессии вида у = а + bх. Если исследователь изучает влияние не­скольких переменных х1, х2,..., хk результатирующий признак y, то возникает необходимость в умении строить регрессионное урав­нение более общего вида, т. е.

где a, b1,. b2,..., bk — постоянные коэффициенты, коэффициенты регрессии.

В связи с уравнением (26) необходимо рассмотреть следующие вопросы: а) как по эмпирическим данным вычислить коэффициенту регрессии а, b1, b2…bк; б)какую интерпретацию можно припи­сать этим коэффициентам; в) оценить тесноту связи между у и каждым из Xi в отдельности (при элиминировании действия остальных); г) оценить тесноту связи между у и всеми переменными х1,..., xк в совокупности.

Рассмотрим этот вопрос на примере построения двухфакторного регрессионного уравнения. Предположим, что изучается зависимость недельного бюджета свободного времени (у) от уровня образования i) и возраста 2) определенной группы трудящихся по данным выборочного обследования. Будем искать эту зависимость в виде линейного уравнения следующего вида:

При расчете коэффициентов уравнения множественной регрессии полезно преобразовать исходные эмпирические данные следующим образом. Пусть в результате обследования п человек получены эм­пирические значения, сведенные в следующую таблицу (в каждом столбце представлены не сгруппированные данные):

Каждое значение переменной в таблице преобразуем по формулам

Коэффициенты с1 и сг находятся по следующим формулам

с1 и с2 называются стандартизированными коэффициентами регрес­сии. Следовательно, зная коэффициенты корреляции между изучае­мыми признаками, можно подсчитать коэффициенты регрессии. Подставим конкретные значения rij из следующей таблицы25;

Коэффициенты исходного регрессионного уравнения b0, b1 и b2 на­ходятся по формулам

Подставляя сюда данные из вышеприведенной таблицы, получим b1= 3,13; b2= -0,17; b0= - 8,56.

Как же следует интерпретировать это уравнение? Например, значение b2 показывает, что в среднем недельный бюджет свободного времени при увеличении возраста на один год и при фиксированном признаке Xi уменьшается на 0,17 час. Аналогично интер­претируется b1. (Исходные эмпирические данные можно изобразить на диаграмме рассеяния аналогично тому, как это сделано на рис. 10, но уже в трехмерном пространстве (у, xt, х2).

Коэффициенты х1 и х2 можно в то же время рассматривать и как показатели тесноты связи между переменными у и, например, Xi при постоянстве хг.

Аналогичную интерпретацию можно применять и к стандарти­зированным коэффициентам регрессии сi. Однако поскольку ci вы­числяются исходя из нормированных переменных, они являются безразмерными и позволяют сравнивать тесноту связи между пере­менными, измеряемыми в различных единицах. Например, в выше­приведенном примере Xi измеряется в классах, a x 2 в годах. C1и с2 позволяют сравнить, насколько z1 теснее связан с у, чем хг 26.

Поскольку коэффициенты biи сi измеряют частную односторон­нюю связь, возникает необходимость иметь показатель, характери­зующий связь в обоих направлениях. Таким показателем является частный коэффициент корреляции

Для рассматриваемого примера ry1.2 = 0,558, rу2.1 i = —0,140.

Для любых трех переменных x1, х2, х3частный коэффициент корреляции между двумя из них при элиминировании третьей стро­ится следующим образом:

Аналогично можно определить и частные коэффициенты корре­ляции для большего числа переменных (r12, 34...). Однако ввиду громоздкости вычисления они применяются достаточно редко.

Для характеристики степени связи результатирующего признака у с совокупностью независимых переменных служит множествен­ный коэффициент корреляции R2y, который вычисляется по формуле (иногда он выражается в процентах)

Так, для вышеприведенного примера он равен

Множественный коэффициент корреляции показывает, что включе­ние признаков х1 и х2 в уравнение

на 32% объясняет изменчивость результатирующего фактора. Чем больше Rt, тем полнее независимые переменные х2..., xk описы­вают признак у. Обычно служит критерием включения или ис­ключения новой переменпой в регрессионное уравнение. Если Л мало изменяется при включении новой переменной в уравнение, то такая переменная отбрасывается.

Корреляционное отношение. Наиболее общим показателем связи при любой форме зависимости между переменными является корре­ляционное отношение h2. Корреляционное отношение h2у/х опреде­ляется через отношение межгрупповой дисперсии к общей диспер­сии по признаку у:

где уi среднее значение i-ro y -сечения (среднее признака у для объектов, у которых x=xi, т. е. столбец «г»); xi —среднее значе­ние i-го x-сечения т. е. строка «i» nyi —число наблюдений в y сечении; nXi — число наблюдений в x -сечении; у — среднее зна­чение у.

Величина h2у/х показывает, какая доля изменчивости значений у обусловлена изменением значения х. В отличие от коэффициента корреляции h2у/х не является симметричным показателем связи, т. е, h2у/х не равно h2х/y. Аналогично определяется корреляционное отношение х по у 27.

Пример. По данным таблицы сопряженности (табл. 9) найдем h2у/х. Вычислим общую среднюю

Сравнение статистических показателей r и h2у/х. Приведем сравнительную характеристику коэффициента корреляции (будем срав­нивать r2) и корреляционного отношения h2у/х.

а) r2 = 0, если x и у независимы (обратное утверждение не­верно);

б) r2 = h2у/х =1 тогда и только тогда, когда имеется строгая ли­нейная функциональная зависимость у от х.

в) r2 = r\y/x<i тогда и только тогда, когда регрессия х и у стро­го линейна, но нет функциональной зависимости;

г) r2 < h2у/х < 1 указывает на то, что нет функциональной зави­симости и существует нелинейная кривая регрессии.





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 485 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Неосмысленная жизнь не стоит того, чтобы жить. © Сократ
==> читать все изречения...

2311 - | 2016 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.