Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Графическая интерпретация эмпирических зависимостей




Частотные распределения изображаются также в виде диаграмм и графиков. Главным достоинством графического изображения яв­ляется его наглядность.

Графическая интерпретация эмпирических зависимостей осно­вана на знании технических правил построения рядов, типов и свойств теоретических распределений. Здесь мы рассмотрим графика вариационных рядов: гистограмму, полигон и кумуляту распределения.

Гистограмма.

Гистограмма — это графическое изображение интервального ряда. По оси абсцисс откладывают границы интервалов, на которых строят прямоугольники с высотой, пропорциональной плотностям распределения соответствующих интервалов (пропор­циональной числу единиц совокупности, приходящейся на единицу длины интервала). При равных интервалах плотности распределения пропорциональны частотам, которые и откладываются по оси ординат (рис. 1, табл. 2).

На гистограмме общее число лиц в каждой категории выражает­ся площадью соответствующего прямоугольника, а общая площадь равна численности совокупности (так как гистограмма на рис. 1 строится по относительным частотам, то площадь равна единице (100%). Поэтому для интервалов 4—6, 6—8, 8—10 в табл. 2, которые в 2 раза больше предыдущих, нужно брать высоты прямоугольников в 2 раза меньшие. При нанесении на графикепоследне­го открытого интервала

 

«10 лет и более» условно будем считать верхней его границей 40 лет. Тогда ширина интервала равна 30го­дам, а плотность распределения — около 0,5% (15,7: 30 ~ 0,5).

Полигон распределения.

Для построения полигона величина при­знака откладывается на оси абсцисс, а частоты или относительные частоты — на оси ординат. Из точек, соответствующих значениям признака, восстанавливаются перпендикуляры, равные по высоте частотам. Вершины перпендикуляров соединяются прямыми ли­ниями.

Для интервального ряда ординаты, пропорциональные частоте (или относительной частоте) интервала, восстанавливаются перпен­дикулярно оси абсцисс в точке, соответствующей середине данного интервала.

Следующие данные распределения рабочих в возрасте до 24 лет по тарифным разрядам (высококвалифицированные рабочие сельхоз-машиностроения)15 дают возможность построить полигон распределе­ния (рис. 2):

 

Условно принято крайние ординаты признака соединять с серединами примыкающих интервалов (на рис. 2 эти замыкающие линии нанесены пунктиром). Однако для распределения, где концентрация событий увеличивается на концах полигона, такое изображение мо­жет привести к ложным представлениям о существе явления.

Кумулята.

Для графического изображения вариационных рядов используются также кумулятивные кривые. При построении кумуляты, как и гистограммы, на оси абсцисс откладываются границы интервалов (либо значения дискретного признака), а на оси орди­нат — накопленные частоты (либо относительные частоты), соответ­ствующие верхним границам интервалов. Таким образом, отличие кумуляты от гистограммы в том, что на графике кумуляты столби­ки, пропорциональные частотам, последовательно накладываются один на другой, так что высота последнего столбика является сум­мой высот столбиков гистограммы.

Кумулята округляет индивидуальные значения признака в пре­делах интервала и представляет собой возрастающую ломаную линию.

Кумулята позволяет быстро определить процент лиц, находящихся ниже или выше заданной величины признака. Например, по данным табл. 3, процент семейств, в которых муж старше cyпруги не более чем на 5 лет, равен 65 (рис. 3, точка А).

 





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 725 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2239 - | 2072 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.