Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Тема 5.3. Показатели вариации в статистике




 

Студент должен:

знать:

- понятие вариации и ее значение;

- абсолютные и относительные показатели вариации;

уметь:

- оценить степень вариации изучаемого признака путем расчета абсолютных и относительных показателей вариации.

 

Вариация. Абсолютные показатели вариации: размах вариации, среднее линейное отклонение, дисперсия, среднее квадратичное отклонение. Способы расчета дисперсии. Относительные показатели вариации: коэффициенты осцилляции, вариации.

 

Методические рекомендации

 

Средние величины дают обобщающую характеристику совокупности по варьирующим признакам. Большое значение имеет изучение отклонений от средних.

Вариация – это различие в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период или момент времени.

Для вычисления отклонений от средней величины используют следующие показатели вариации.

1. Размах вариации вычисляется как разность между наибольшим и наименьшим значением варьирующего признака:

Размах вариации улавливает только крайние отклонения от средней, но не отражает отклонений от нее всех вариаций в ряду. Распределение отклонений можно уловить, исчислив отклонения всех вариаций от средней. А для того чтобы дать им обобщающую характеристику, необходимо далее вычислять среднюю из этих отклонений. Для этого используют ряд средних отклонений.

2. Среднее арифметическое или линейное отклонение (d) – учитывает различие всех единиц изучаемой совокупности, их колеблемость относительно среднего уровня:

3. Средний квадрат отклонение или дисперсия () – измеряет вариацию признака во всей совокупности под слиянием всех факторов. Чем меньше дисперсия, тем достовернее средняя отражает всю совокупность:

4. Среднее квадратичное отклонение () – обобщающая характеристика размеров вариации признака в совокупности. Говорит о типичности средней:

5. Коэффициент вариации (V) – характеристика однородности совокупности:

Коэффициент вариации является критерием типичности средней. Если коэффициент вариации очень большой (превышает 40%), то это означает, что средняя характеризует совокупность по признаку, который существенно изменяется у отдельных ее единиц. Типичность такой средней невелика.

Пример вычисления показателей вариации покажем на основе группировки рабочих по средней месячной выработке изделий (штук) (табл. 9).

 

Таблица 9

 

Группы рабочих по средней месячной выработке изделий, штук Середина интервала, Х Число рабочих, f
140 – 160       – 34      
160 – 180       – 14      
180 – 200       + 6      
200 – 220       + 26      
Итого -     -   -  

 

1. Вычислим размах вариации:

шт.

2. Вычислим среднюю месячную выработку:

штук

3. Вычислим среднее линейное отклонение:

штук

4. Вычислим дисперсию:

5. Вычислим среднее квадратичное отклонение:

шт.

6. Вычислим коэффициент вариации:

Таким образом, данная совокупность рабочих достаточно однородна по выработке, поскольку вариация признака составляет лишь 9,8%, а среднее линейное отклонение всего 15,2 штук.

 

Вопросы для самоконтроля

 

  1. Что представляет собой вариация признака?
  2. Перечислите показатели, которыми измеряется вариация признаков.
  3. Что такое дисперсия и как она вычисляется?
  4. Как вычисляется среднее квадратичное отклонение?
  5. Что представляет собой коэффициент вариации?

 





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 641 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Что разум человека может постигнуть и во что он может поверить, того он способен достичь © Наполеон Хилл
==> читать все изречения...

2457 - | 2273 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.