Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Геометрическое определение вероятности




Пусть случайное испытание можно представить себе как бросание точки наудачу в некоторую геометрическую область G (на прямой, плоскости или пространстве). Элементарные исходы – это отдельные точки G, любое событие – это подмножество этой области, пространства элементарных исходов G. Можно считать, что все точки G «равноправны» и тогда вероятность попадания точки в некоторое подмножество пропорционально его мере (длине, площади, объему) и не зависит от его расположения и формы.

Геометрическая вероятность события А определяется отношением:
,
где m(G), m(A) – геометрические меры (длины, площади или объемы) всего пространства элементарных исходов и события А.

Пример. На плоскость, разграфленную параллельными полосами шириной 2d, расстояние между осевыми линиями которых равно 2D, наудачу брошен круг радиуса r (). Найти вероятность того, что круг пересечет некоторую полосу.

Решение. В качестве элементарного исхода этого испытания будем считать расстояние x от центра круга до осевой линии ближайшей к кругу полосы. Тогда все пространство элементарных исходов – это отрезок . Пересечение круга с полосой произойдет в том случае, если его центр попадет в полосу, т.е. , или будет находится от края полосы на расстоянии меньшем чем радиус, т.е. .

Для искомой вероятности получаем: .

3) Теоремы сложения и умножения вероятностей

События А и В называются несовместными, если они не могут произойти одновременно

События А и В называются совместными, если они могут произойти одновременно.

Суммой двух события А и В называется событие с, состоящее в выполнении события А или события В, или обоих вместе.

Сумой нескольких событий называется событие, состоящее в том, что появится хотя бы одно из этих событий.

Теорема сложения вероятностей несовместных событий

Теорема сложения вероятностей совместных событий

В случае четырех и более события данная формула еще больше усложняется

События А и В называются независимыми, если вероятность появления события А не зависит от появления события В и наоборот: вероятность события в не зависит от появления события А.

События А и В называются зависимыми, если вероятность события В зависит от того появилось ли событие А или наоборот.

Произведением двух события А и В называется событие С, состоящее в том, что события А и В появятся одновременно.

Произведением нескольких событий называется событие, состоящее вы том, что данные события появятся одновременно.

Теорема умножения вероятностей для независимых событий





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 418 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Чтобы получился студенческий борщ, его нужно варить также как и домашний, только без мяса и развести водой 1:10 © Неизвестно
==> читать все изречения...

2432 - | 2320 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.