Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Непрерывность функции в точке и на промежутке




Функция, непрерывная во всех точках некоторой области, называется непрерывной в этой области.

Функция называется непрерывной справа в точке , если .

Функция называется непрерывной слева в точке , если .

Функция называется непрерывной в интервале , если она непрерывна в каждой точке этого интервала.

Функция называется непрерывной на отрезке , если она является непрерывной в интервале , непрерывной справа в точке , то есть и непрерывной слева в точке , то есть .

Функция называется непрерывной в точке , если:

1. функция определена в точке и ее окрестности;

2. существует конечный предел функции в точке ;

3. это предел равен значению функции в точке , т.е.

При нахождении предела функции , которая является непрерывной, можно переходить к пределу под знаком функции, то есть

Задание. Вычислить предел

Решение.

Ответ.

Асимптоты.

Аси́мпто́та (от греч. ασϋμπτωτος — несовпадающий, не касающийсякривой с бесконечной ветвью) — прямая, обладающая тем свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность

Виды асимптот:

Вертикальная

Вертикальная асимптота — прямая вида при условии существования предела .

Горизонтальная

Горизонтальная асимптота — прямая вида при условии существования предела

.

Наклонная

Наклонная асимптота — прямая вида при условии существования пределов

Порядок нахождения асимптот

1. Нахождение вертикальных асимптот.

2. Нахождение двух пределов

3. Нахождение двух пределов :

если в п. 2.), то , и предел находится по формуле горизонтальной асимптоты, .

Понятие производной. Основные правила дифференцирования.

Произво́дная (функции в точке) — основноепонятие дифференциального исчисления, характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует.

Таблица производных

Производные степенных функций Производные тригонометрических функций Производные обратных тригонометрических функций


Правила дифференцирования

Операция нахождения производной называется дифференцированием. При выполнении этой операции часто приходится работать с частными, суммами, произведениями функций, а также с «функциями функций», то есть сложными функциями. Исходя из определения производной, можно вывести правила дифференцирования, облегчающие эту работу. Если C — постоянное число и f=f(x), g=g(x) — некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:

·

·

· [2]

· [3]

·

· …(g ≠ 0)

· (g ≠ 0)

· Если функция задана параметрически:

, то

Основная статья: Дифференцирование сложной функции

·

· Формулы производной произведения и отношения обобщаются на случай n-кратного дифференцирования (формула Лейбница):

где — биномиальные коэффициенты.

Следующие свойства производной служат дополнением к правилам дифференцирования:

· если функция дифференцируема на интервале , то она непрерывна на интервале . Обратное, вообще говоря, неверно (например, функция на );

· если функция имеет локальный максимум/минимум при значении аргумента, равном , то (это так называемая лемма Ферма);

· производная данной функции единственна, но у разных функций могут быть одинаковые производные.

·

Доказательство





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 1398 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент может не знать в двух случаях: не знал, или забыл. © Неизвестно
==> читать все изречения...

2781 - | 2343 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.