Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Числовые и функциональные ряды




 

1. Понятие числового ряда, его частичной суммы. Понятие сходящегося ряда и его суммы. Свойства сходящихся рядов. Необходимый признак сходимости ряда.

2. Достаточные признаки сходимости знакоположительных рядов: признаки сравнения, признак Даламбера, интегральный признак. Условие сходимости ряда .

3. Понятие знакочередующегося ряда. Достаточный признак его сходимости. Знакопеременный ряд, достаточный признак его сходимости. Понятие абсолютно и условно сходящихся рядов.

4. Понятие функционального ряда и его области сходимости. Степенные ряды, радиус и область сходимости степенного ряда. Интегрирование и дифференцирование степенного ряда. Ряд Тейлора функции . Разложение элементарных функций в степенные ряды.

5. Применения степенных рядов для приближенного вычисления значения функции, для вычисления определенного интеграла, для решения дифференциального уравнения.

6. Ряд Фурье периодической функции . Ряды Фурье для четной и нечетной функций. Разложение в ряд Фурье функции, заданной на отрезке.

7.* Комплексная форма ряда Фурье. Амплитудный и фазовый спектры периодической функции.

8.* Представление непериодической функции интегралом Фурье в действительной и комплексной форме. Интеграл Фурье от четной и нечетной функции. Спектральная функция. Прямое и обратное преобразование Фурье.

Номера контрольных работ, которые необходимо выполнить во втором семестре, и номера задач соответствующих вариантов представлены в табл. 2.

 

Таблица 2

 

  Номер варианта     Контрольная работа № 3 Номера задач   Контрольная работа № 4 Номера задач
  81 91 101 111 121 131 141
  82 92 102 112 122 132 142
  83 93 103 113 123 133 143
  84 94 104 114 124 134 144
  85 95 105 115 125 135 145
  86 96 106 116 126 136 146
  87 97 107 117 127 137 147
  88 98 108 118 128 138 148
  89 99 109 119 129 139 149
  90 100 110 120 130 140 150

III семестр

Для студентов всех специальностей, кроме экономических, гуманитарных

и физической культуры

 

Программа

Дифференциальное исчисление функции нескольких переменных

 

1. Определение и отыскание частных производных. Определение дифференцируемой функции. Дифференциалы первого и второго порядков. Понятие сложной функции и ее дифференцирование. Неявные функции и их дифференцирование. Касательная плоскость и нормаль к поверхности, их уравнения.

2. Безусловный экстремум функции. Глобальный экстремум функции в замкнутой ограниченной области. Условный экстремум функции.

3. Понятие скалярного поля. Поверхности и линии уровня скалярного поля. Понятие производной скалярного поля по направлению, формула для её вычисления. Определение градиента скалярного поля, свойства градиента.

 





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 307 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Самообман может довести до саморазрушения. © Неизвестно
==> читать все изречения...

2514 - | 2362 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.006 с.