Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Векторная алгебра и аналитическая геометрия




Математика

 

 

Программа и контрольные задания

для студентов I и II курсов заочной формы обучения

всех специальностей

 

Екатеринбург

 

 

УДК 51.(075.8)

 

 

Составители В.Б.Грахов, Р.М.Минькова, В.Б.Соловьянов

Научный редактор доц., канд. техн. наук В.А.Нырко

Математика: программа и контрольные задания / В.Б.Грахов, М.Минькова, В.Б.Соловьянов. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2005. 40 с.

 

Приведённый в работе материал и задания к нему распределены по семестрам, в соответствии со специальностями и учебными графиками, утверждёнными в УГТУ-УПИ. Предназначена для студентов I и II курсов заочной формы обучения всех специальностей.

 

Библиогр.: 21 назв. Табл. 6.

 

 

Подготовлено кафедрой «Вычислительные методы и уравнения математической физики».

 

© ГОУ ВПО «Уральский государственный

технический университет-УПИ», 2005

 

Введение

В настоящих методических указаниях приведена программа и контрольные задания по математике для студентов заочной формы обучения УГТУ-УПИ. В процессе изучения курса математики студент должен выполнить в каждом семестре 2 контрольные работы. Номер варианта определяется по последней цифре номера студенческого билета или зачётной книжки. Так, например, если этот номер заканчивается цифрой 5, то в контрольной работе № 1 нужно решить задачи 5, 15, 25, 35.

При выполнении контрольных работ нужно придерживаться следующих правил.

1. Каждую контрольную работу следует выполнять в отдельной тетради,

оставляя поля для замечаний рецензента.

2. На обложке тетради необходимо указать: а) свою фамилию и инициалы;

б) специальность обучения; в) номер зачётной книжки; г) название дисциплины; д) номер контрольной работы.

3. В контрольную работу должны быть включены все задачи, указанные в задании, и в строгом соответствии с номером своего варианта.

4. Решения задач в каждой контрольной работе следует располагать обязательно в порядке номеров, указанных в задании. Перед решением каждой задачи необходимо выписать полностью её условие.

5. Решения задач должны содержать подробные пояснения и необходимые чертежи.

6. После получения прорецензированной работы студент должен исправить все отмеченные рецензентом замечания и недочёты, а также выполнить все его рекомендации. Все исправления нужно записывать в этой же тетради после всех решённых задач контрольной работы. Вносить исправления в тексты решения задач после рецензирования запрещается. Незачтённую контрольную работу с последующими соответствующими исправлениями следует направить на повторную рецензию.

7. Контрольные работы в каждом семестре должны быть представлены для рецензирования не позднее чем за 2 недели до начала экзаменационной сессии. Рецензирование контрольных работ, присланных позже указанного срока, переносится на начало следующего семестра.

Прорецензированные и зачтённые контрольные работы студент должен предъявлять экзаменатору перед сдачей зачёта или экзамена.

Во время сдачи зачёта или экзамена студент должен показать понимание основных теоретических и практических вопросов программы и умение применять их в решении задач и примеров. Определения, теоремы и правила должны формулироваться точно и с пониманием существа вопросов.

Во время экзаменационных сессий для студентов-заочников организуются обзорные лекции и практические занятия по программам предыдущего семестра, а также установочные лекции по программам следующего семестра.

В межсессионный период по субботам проводятся просмотры лекций по телевидению, а каждую чётную субботу – консультации, приём зачётов и экзаменов. Информация о датах и времени их проведения вывешивается на кафедральном стенде после окончания экзаменационной сессии.

 

I семестр

Программа

 

Векторная алгебра и аналитическая геометрия

1. Определители 2-го и 3-го порядков.

2. Векторы в и : линейные операции, базис, координаты, условие коллинеарности. Проекция вектора на ось.

3. Скалярное, смешанное и векторное произведение векторов в : определения, свойства, формулы вычисления через координаты векторов в ортонормированном базисе.

4. Уравнение плоскости в с заданным нормальным вектором. Условия параллельности и перпендикулярности двух плоскостей. Отыскание угла между двумя плоскостями, расстояния от точки до плоскости.

5. Уравнение прямой на плоскости и в пространстве: канонические уравнения, параметрические уравнения; общее уравнение прямой в пространстве. Условия параллельности и перпендикулярности двух прямых, прямой и плоскости. Отыскание угла между двумя прямыми на плоскости, угла между прямой и плоскостью.

6. Кривые второго порядка: эллипс, гипербола, парабола и их канонические уравнения. Поверхности второго порядка и их построение.

7. Комплексные числа. Модуль и аргумент комплексного числа. Алгебраическая, тригонометрическая и показательная форма записи комплексного числа. Операции над комплексными числами: сложение, вычитание, деление, возведение в степень, извлечение корня.

Введение в математический анализ

1. Определение предела функции в точке, в бесконечности. Предел последовательности как частный случай предела функции. Односторонние пределы функции. Основные теоремы о пределе функции.

2. Бесконечно малые и бесконечно большие функции и их свойства; связь бесконечно больших функций с бесконечно малыми. Сравнение бесконечно малых.

3. Отыскание предела отношения двух многочленов при . Первый и второй замечательный пределы.

4. Функции, непрерывные в точке, и их свойства. Точки разрыва функции и их классификация.

5. Функции, непрерывные на отрезке, и их свойства.

 





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 326 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Что разум человека может постигнуть и во что он может поверить, того он способен достичь © Наполеон Хилл
==> читать все изречения...

2484 - | 2299 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.