Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Арифметические операции в позиционных системах счисления




Арифметические операции в рассматриваемых позиционных системах счисления выполняются по законам, известным из десятичной арифметики. Двоичная система счисления имеет основание 2, и для записи чисел используются всего две цифры 0 и 1 в отличие от десяти цифр десятичной системы счисления. Рассмотрим сложение одноразрядных чисел: 0+0=0, 0+1=1, 1+0=0. Эти равенства справедливы как для двоичной системы, так и для десятичной системы. Чему же равно 1+1? В десятичной системе это 2. Но в двоичной системе нет цифры 2! Известно, что при десятичном сложении 9+1 происходит перенос 1 в старший разряд, так как старше 9 цифры нет. То есть 9+1=10. В двоичной системе старшей цифрой является 1. Следовательно, в двоичной системе 1+1=10, так как при сложении двух единиц происходит переполнение разряда и производится перенос в старший разряд. Переполнение разряда наступает тогда, когда значение числа в нем становится равным или большим основания. Для двоичной системы это число равно 2 (102=210).
Продолжая добавлять единицы, заметим: 102+1=112, 112+1=1002 - произошла "цепная реакция", когда перенос единицы в один разряд вызывает перенос в следующий разряд. Сложение многоразрядных чисел происходит по этим же правилам с учетом возможности переносов из младших разрядов в старшие. Вычитание многоразрядных двоичных чисел производится с учетом возможных заёмов из старших разрядов. Действия умножения и деления чисел в двоичной арифметике можно выполнять по общепринятым для позиционных систем правилам.
В основе правил арифметики любой позиционной системы лежат таблицы сложения и умножения одноразрядных чисел.

Для двоичной системы счисления:

Аналогичные таблицы составляются для любой позиционной системы счисления. Пользуясь такими таблицами, можно выполнять действия над многозначными числами.

Пример 4. Выполнить действия в пятеричной системе счисления: 3425+235; 2135.55.

Решение

Составим таблицы сложения и умножения для пятеричной системы счисления:

Выполним сложение. Рассуждаем так: два плюс три равно 10 (по таблице); 0 пишем, 1 - в уме. Четыре плюс два равно 11 (по таблице), да еще один, 12. 2 пишем, 1 - в уме. Три да один равно 4 (по таблице). Результат - 420.

Выполним умножение. Рассуждаем так: трижды три - 14 (по таблице); 4 пишем, один - в уме. Трижды один дает 3, да плюс один, - пишем 4. Дважды три (по таблице) - 11; 1 пишем, 1 переносим влево. Окончательный результат - 1144. Если числа, участвующие в выражении, представлены в разных системах, нужно сначала привести их к одному основанию.

Пример 5. Сложить два числа: 178 и 1716.

Решение Приведем число 1716 к основанию 8 посредством двоичной системы (пробелами условно обозначено деление на тетрады и триады): 1716=101112=101112=278.Выполним сложение в восьмеричной системе:

Сделаем проверку, выполнив те же действия в десятичной системе:

Пример 6. Вычислить выражение, записав результат в двоичной системе счисления.

Решение

Приведем числа, участвующие в выражении, в единую систему счисления, например, десятичную:

Выполним указанные действия:

23-81/27=2010.

Запишем результат в двоичной системе счисления: 2010=101002.

Таким образом, арифметические действия в позиционных системах счисления выполняются по общим правилам. Необходимо только помнить, что перенос в следующий разряд при сложении и заем из старшего разряда при вычитании определяются величиной основания системы счисления.

Вопросы для самоконтроля

  1. Что такое система счисления? Алгоритм перевода из десятичной в недесятичную систему счисления. Примеры.
  2. Что такое позиционная система счисления? Алгоритм перевода из недесятичной в десятичную систему счисления. Пример. Суммирование в недесятичной системе счисления. Примеры.
  3. Что такое непозиционная система счисления? Умножение и деление в недесятичной системе счисления. Примеры.
  4. Понятие позиционной системы счисления. Унарная, фибоначиева и другие системы счисления (вопрос необязательный)




Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 1588 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Ваше время ограничено, не тратьте его, живя чужой жизнью © Стив Джобс
==> читать все изречения...

2245 - | 2190 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.