Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами




В этой статье мы разберем принципы решения линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами , где p и q – произвольные действительные числа. Сначала остановимся на теории, далее применим полученные результаты в решении примеров и задач.

Если Вам будут встречаться незнакомые термины, то обращайтесь к разделу определения и понятия теории дифференциальных уравнений.

Сформулируем теорему, которая указывает, в каком виде находить общее решение ЛОДУ.

Теорема.

Общее решение линейного однородного дифференциального уравнения с непрерывными на интервале интегрирования X коэффициентами определяется линейной комбинацией , где - линейно независимые частные решения ЛОДУ на X, а - произвольные постоянные.

Таким образом, общее решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид y0=C1⋅y1+C2⋅y2, где y1 и y2 – частные линейно независимые решения, а С1 и C2 – произвольные постоянные. Осталось научиться находить частные решения y1 и y2.

Эйлер предложил искать частные решения в виде .

Если принять частным решением ЛОДУ второго порядка с постоянными коэффициентами , то при подстановке этого решения в уравнение мы должны получить тождество:

Так мы получили так называемое характеристическое уравнение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами. Решения k1 и k2 этого характеристического уравнения определяют частные решения и нашего ЛОДУ второго порядка с постоянными коэффициентами.

В зависимости от коэффициентов p и q корни характеристического уравнения могут быть:

  1. действительными и различными ,
  2. действительными и совпадающими ,
  3. комплексно сопряженной парой .

В первом случае линейно независимыми частными решениями исходного дифференциального уравнения являются и , общее решение ЛОДУ второго порядка с постоянными коэффициентами есть .

Функции и действительно линейно независимы, так как определитель Вронского отличен от нуля для любых действительных x при .

Во втором случае одним частным решением является функция . В качестве второго частного решения берется . Покажем, что действительно является частным решением ЛОДУ второго порядка с постоянными коэффициентами и докажем линейную независимость y1 и y2.

Так как k1 = k0 и k2 = k0 совпадающие корни характеристического уравнения, то оно имеет вид . Следовательно, - исходное линейное однородное дифференциальное уравнение. Подставим в него и убедимся, что уравнение обращается в тождество:

Таким образом, является частным решением исходного уравнения.

Покажем линейную независимость функций и . Для этого вычислим определитель Вронского и убедимся, что он отличен от нуля.

Вывод: линейно независимыми частными решениями ЛОДУ второго порядка с постоянными коэффициентами являются и , и общее решение есть при .

В третьем случае имеем пару комплексных частных решений ЛОДУ и . Общее решение запишется как . Эти частные решения могут быть заменены двумя действительными функциями и , соответствующими действительной и мнимой частям. Это хорошо видно, если преобразовать общее решение , воспользовавшись формулами из теории функции комплексного переменного вида :

где С3 и С4 – произвольные постоянные.

Итак, обобщим теорию.





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 474 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Есть только один способ избежать критики: ничего не делайте, ничего не говорите и будьте никем. © Аристотель
==> читать все изречения...

2217 - | 2173 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.