Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Определение и способ решения




Пусть — некоторая функция, — ее производная. Для удобства будем записывать производную виде , имеющем смысл отношения бесконечно малых приращений — дифференциалов. Дифференциал — приращение значения переменной в окрестности , стремящееся к нулю. Дифференциал функции — малое приращение функции, . Пусть и — некоторые функции от и . Рассмотрим уравнение

.

Уравнение такого вида называется обыкновенным дифференциальным уравнением с разделяющимися переменными. Умножим его на :

.

Последнее равенство означает, что малые приращения левой и правой частей равны. Поэтому их суммы также равны. Предположим что при и возьмем интегралы от левой и правой частей. Пределы интегрирования — от до для левой части и от для для правой части уравнения:

.

Решая получившееся в результате интегрирования алгебраическое уравнение, мы можем выразить .

Значения и называются начальными условиями. В случае других начальных условий решение уравнения будет отличаться на постоянную. Поэтому, если начальные условия не даны, можно взять первообразные левой и правой частей и прибавить к ним константу. Используя неопределенный интеграл — обозначение множества первообразных — , где — первообразная , — произвольная постоянная, запишем это в виде

.

Следует отметить, что у дифференциального уравнения с разделяющимися переменными могут существовать так называемые нулевые решения — постоянные , удовлетворяющие уравнению . При них равны нулю как правая, так и левая части дифференциального уравнения (поскольку производная константы равна нулю).

2.3)

(О существовании и единственности решения задачи Коши). Пусть - непрерывная функция в области , причем - также непрерывен в . Тогда для любой точки задача Коши: имеет решение, причем единственное в том смысле, что если есть 2 ее решения и , определенные на интервалах и , содержащих точку , то они совпадают на пересечении этих интервалов.

Теорему оставим без доказательства.

Замечание. Говорят, что решение дифференциального уравнения на интервале есть продолжение решения на , если и на . Также говорят, что решение - максимальное или непродолжаемое относительно , если не обладает продолжениями, целиком лежащими в .

На основании этого замечания можно сказать, что при условиях теоремы существует единственное максимальное (непродолжаемое) решение задачи Коши.

Геометрический смысл сформулированной теоремы состоит в следующем. Левая часть уравнения представляет собой - тангенс угла наклона касательной к графику искомой функции в точке , а правая часть задает его численное значение в этой точке. Поэтому можно считать, что уравнение задает поле направлений на области , т.е. к каждой точке прикреплен вектор, указывающий направление касательной к искомой интергальной кривой.

2.3)





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 366 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Слабые люди всю жизнь стараются быть не хуже других. Сильным во что бы то ни стало нужно стать лучше всех. © Борис Акунин
==> читать все изречения...

2210 - | 2135 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.