Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Сенсорная функция мозга заключается в определении сигнальной (биологической) значимости сенсорных стимулов на основе анализа их физических характеристик




Под биологической значимостью понимается направленность реакций живого организма, которая определяется его доминирующей мотивацией, возникающей при отклонении параметров устойчивого неравновесия, а также информацией, извлекаемой из окружающей среды и прошлого жизненного опыта. Для оценки биологической значимости сенсорных сигналов анализ их физических характеристик является необходимой, но недостаточной операцией. Биологическая значимость сигнала реализуется в активации некоей совокупности эффекторных аппаратов. Следовательно,

Извлечение биологически полезной информации с целью ее использования для формирования двигательных актов основано на преобразовании входной кодовой комбинации активности нервных элементов сенсорных систем в реакцию исполнительных аппаратов, что по своей сути представляет процесс декодирования сенсорных сообщений.

Тогда оценка биологической значимости сигнала сводится к установлению соответствующей закономерности взаимодействия нервных элементов сенсорных и двигательных систем мозга.

Выход на эффекторные элементы должен обладать свойством избирательности, чтобы избавить систему от неадекватных реакций. Выделение экологически значимых признаков (обычно достаточно простых) у животных низких уровней эволюционного развития может осуществляться в самих сенсорных системах (иногда уже на рецеп-

торном уровне) вследствие жесткой организации нервных связей. Однако у более высокоорганизованных животных (хищных, приматов) эта операция уже не может ограничиться специфическими образованиями сенсорных систем. Ведь по мере развитии уровня организации животных рецеитуар стимулов, имеющих сигнальное значение, как правило, расширяется. Поэтому возрастание активности организма как системы должно быть связано с возможностью перехода избирательного приема от одних сигналов к другим и в соответствии с этим — с появлением новых внутримозговых конструкций.

• Нервные образования, входящие в систему оценки биологической значимости сигналов, должны удовлетворить ряду требований. Во-первых, они должны быть связаны с различными сенсорными системами. Во-вторых, они должны быть связаны с мотивациоген-ными структурами лимбической системы, ибо значимость тех или иных сигналов определяется на основе доминирующей мотивации. В-третьих, учитывая, что значимость одного и того же сенсорного стимула зависит от всей окружающей ситуации, т. е. от показаний других сенсорных систем, следует допустить наличие конвергенции полимодальной импульсации и способность к пластическим перестройкам активности нейронов. Наконец, в-четвертых, эта система должна быть связана с регуляцией целостных двигательных актов на основе избирательного характера реагирования. Изложенным требованиям удовлетворяют таламокорти-кальные ассоциативные системы мозга: таламопариетальная и таламофрон-тальная.

Получены доказательства (А. М. Ива-ницкий, 1976) того, что ранние компоненты суммарного вызванного потенциала мозга человека отражают поступление в кору информации о физических характеристиках сенсорных сигналов, а поздние — являются отражением значимости сигнала для организма. У больных с психическими расстройствами, имеющих определенный дефицит одного из видов информации,

возникают стойкие изменения соответствующих фаз вызванных потенциалов. В особенности выделяются ассоциативные области неокортекса в связи с выраженной конвергенцией к ним раз-номодальной импульсации как основы оценки сигнальной значимости стимула в контексте соответствующих воздействий.

Именно этот механизм у высших позвоночных способствует селективному отбору одних видов информации с одновременным сопряженным торможением других сенсорных влияний. При этом у животных доминирующая мотивация возникает из биологической потребности в результате сдвигов го-меостаза. Однако доминирующая мотивация формируется при воздействии стимулов, ранее связанных с определенными подкреплениями. Живая система способна предвидеть изменения гомеостаза с помощью сигналов, предвосхищающих сдвиг параметров от нормы или возвращение к ней. В связи с этим другие сенсорные стимулы способны изменять значимость сигнала, если они меняют доминирующую мотивацию. И тогда значимый стимул является сигналом, реагирование па который сопряжено с большей вероятностью достижения желаемого результата в соответствии с доминирующей мотивацией и прошлым жизненным опытом. Наличие сопряженных признаков в комплексном сенсорном воздействии позволяет уменьшить неопределенность выбора поведенческих реакций, необходимых для получения требуемого результата.

Роль ассоциативных систем в оценке биологической значимости сенсорных сигналов отчетливее видна по отношению к зрению и слуху. Конечно, сигнальное значение имеют все сенсорные стимулы, но способностью опережающего воздействия обладают в первую очередь зрительные, слуховые, а также обонятельные сигналы. Особенностью структурной организации телсцептив-ных входов в ассоциативные системы является множественность путей проведения к ним слуховых и зрительных афферентаций.

Для целей определения биологической значимости механизмы конвергенции обеспечивают полифункциональность одного и того же сигнала, т. е. зависимость его смысла от ситуации, в которой он возникает. Степень значимости любого агента внешней среды зависит не только от определенной мотивации, но и от сопоставления этого агента с другими факторами среды, когда он выступает в качестве компонента более сложного сенсорного комплекса. Именно поэтому наиболее полная сигнальная значимость фактора окружающего пространства может реализовываться с участием тех структур мозга, куда приходит информация о разных по сенсорным качествам факторах среды, т. е. по механизму одновременного гетеросенсорного сопоставления. Одним из проявлений динамического характера конвергенции в ассоциативные зоны коры является свойство привыкания их электрических реакций при использовании однообразной ритмической стимуляции. Степень развития привыкания находится в прямой зависимости от биологической значимости применяемого сигнала. Например, стабильные ответы нейронов лобных долей у бодрствующих обезьян возникают лишь в том случае, если раздражители прямо или косвенно связаны с эмоционально-мотивационной сферой животного, необычны для него или сигнализируют об опасности, т. е. сопровождаются четкой ориентировочной реакцией. Привыкание ответов наблюдается в тех случаях, когда используемые раздражители являются индифферентными для животного или хороню знакомы ему (рис. 71). Если же эти агенты сопровождаются биологически значимым подкреплением по правилам выработки условного рефлекса, то они приобретают свойства условного сигнала с одновременной стабилизацией реакций нейронов лобной коры в ответ на их применение.

Как привыкание, так и сенситизация отражают дистрибутивный характер данных пластических реакций мозга и совпадают с закономерностями прояв-

ления ориентировочного рефлекса. Поэтому предполагается, что «новизна» является тем информативным признаком сенсорных стимулов, с которого начинается их оценка в ассоциативных системах монга.

Привыкание к повторным стимулам, вероятно, связано с процессами формирования следов кратковременной памяти (Е. Н. Соколов, 1981).

С помощью ориентировочной реакции устанавливаются соответствующие воспринимающие поверхности для наилучшего восприятия внешнего раздражения. При размещении источника те-лецептивных стимулов по средней линии головы наблюдается их наиболее высокое пространственное разрешение. Избирательность к этой физиологически значимой области пространства применительно к акустическим сигналам обнаружена для нейронов мозжечка и сенсомоторной ассоциативной коры (Я- А. Альтман, 1972; Г. А. Куликов, 1989). Участие фронтальной и теменной областей коры в обеспечении точности ориентировочных реакций установлено и для зрительных сигналов, по отношению которых отмечена и пространственная, и дирекциональная избирательная чувствительность соответствующих нейронов. Более того, после повреждения теменной ассоциативной области отчетливо выступает нарушение пространственного восприятия зрительных стимулов и адекватных двигательных реакций, т. е. нарушения пространственного согласования зрительно-моторной координации.

0 Система, оценивающая биологическую значимость сенсорных стимулов, должна обладать избирательным характером реагирования на их отдельные значимые признаки и/или совокупность последних. Поэтому логичен вопрос о том, как отражаются в реакциях ассоциативных структур мозга различные физические параметры сенсорных сигналов.

Известно, что нейроны фронтальной ассоциативной коры принимают зрительную импульсацию, не связанную с поточечным описанием контура зрительных сигналов, но отражающую их временные и пространственные

Рис. 71. Сохранение (i) и привыкание (11} реакций нейрона при предъявлении раздражителем обезьяне (по А. А. Пирогову, 1980):

а _ изменение средней частоты нмпульсацин на 1, 3, 5 и 7-е предъявления раздражителей; 6 — гистограммы ответа нейрона на соответствующие раздражения; в— нейронограммы ответов на 1-е и 7-е предъявления; стрелки —моменты предъявления раздражителей. На /- эмоционально значимый раздражитель, на II — индифферентный раздражитель

параметры. Кроме того, показано, что

нейроны фронтальной коры обладают свойством избирательного реагирования на биологически значимые признаки коммуникативных акустических сигналов. Существенно то, что для млекопитающих (в отличие от низших позвоночных) лишь небольшое число сигналов может иметь четкое «ключевое» значение, которое в большей мере определяется доминирующим мотивационным фоном для данного животного. Поэтому становится понятным участие в оценке биологической значимости сигнала таламофронталь-ной ассоциативной системы, тесно связанной с лимбическими структурами мозга, имеющими прямое отношение

к формированию мотивационных состояний (Г. А. Куликов, 1989).

В связи с этим закономерен вопрос, как отражается в характере электрических реакций фронтальной коры процесс приобретения ранее индифферентным звуковым стимулом определенного сигнального значения при выработке условного рефлекса. Специальные исследования показали, что преобразование ранее неэффективного звукового тона в мотивационно.окрашенный сигнал оборонительной реакции животного сопровождается возникновением избирательного реагирования элементов фронтальной коры именно на данную частоту заполнения тонального сигнала. Однако по мере стабилизации и

закрепления условного рефлекса такая избирательность выражалась слабее и, наконец, исчезала, что свидетельствует о динамической роли фронтального неокортекса в формировании условно-рефлекторной сенсомоторной интеграции.

• Описанные выше закономерности избирательного реагирования на сиг-нально значимые агенты среды могут служить физиологическими предпосылками для трактовки механизмов сенсорного внимания (Н. Ф. Суворов, О. П. Таиров, 1986). В самом общем смысле внимание рассматривается как один из механизмов устранения избыточности сенсорных сообщений, который участвует как в избирательном регулировании сенсорных сообщений, так и фильтрации информации, извлекаемой из систем кратковременной и долговременной памяти. Принято думать, что процессы фильтрации осуществляются уже в специфических образованиях сенсорных систем. Между тем в ряде работ мнение об уменьшении избыточности информации основано на данных об уменьшении плотности потока импульсации при переходе от нижележащих уровней сенсорных систем к вышележащим и на посту-лировании использования в их деятельности двоичного кода. Этот вопрос, однако, остается не решенным с нейро-физиологических позиций, и проблемой «внимания» преимущественно владеют психологи и нсихофизиологи.

Сам А. А. Ухтомский (1923), сформулировав принцип доминанты как физиологическую основу акта внимания, писал, что из множества действующих рецепций доминанта вылавливает группу рецепций, которая для нее в особенности биологически значима.

Определение вектора поведения (по принципу доминанты) основано на взаимодействии биологически значимых экстероцептивных (окружающая среда) и интероцептивных (мотивацион-ных) воздействий, основным субстратом установления которого являются таламокортикальные ассоциативные системы мозга.

• Следовательно, целостная сенсорная функция мозга обеспечивается содружественной деятельностью сенсорных и ассоциативных систем и направлена на организацию адаптивных движений и действий. Последнее лежит в основе согласования движения с чувствованием (И. М. Сеченов, 1863).





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 786 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Человек, которым вам суждено стать – это только тот человек, которым вы сами решите стать. © Ральф Уолдо Эмерсон
==> читать все изречения...

2245 - | 2091 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.