Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Методы определения местоположения воздушных объектов




Методы дальнометрии

 

В зависимости от того, по какому параметру отраженного или ответного сигнала (по фазе, частоте или временному положению импульса) определяется его запаздывание относительно излученного, различают фазовый, частотный и импульсный методы радиодальнометрии.

Фазовый метод

При фазовом методе передатчик

(рис. 3.1) излучает немодулированное

гармоническое колебание.

Фаза этого зондирующего сигнала имеет

мгновенное значение

где f0 – частота излучаемого колебания,

а j0 – начальная фаза. Тогда мгновенная фаза j2 отраженного сигнала будет запаздывать на время t3 = 2r/с, где r – дальность отражающего объекта. Поэтому

.

Здесь для упрощения предполагается, что при отражении зондирующего сигнала от объекта его фаза не изменяется.

Отраженный сигнал поступает на приемную антенну, затем в приемник ПРМ и с него на фазометр Ф, на который поступает и зондирующий сигнал. Фазометр измеряет разность y фаз излучаемого и отраженного сигналов:

,

которая пропорциональна дальности отражающего объекта.

Следовательно, искомая дальность r=ly/(4p) и показания фазометра можно проградуировать непосредственно в единицах расстояния.

Система, реализующая фазовый метод радиодальнометрии, называется фазовым радиодальномером. Рассмотрим его некоторые характеристики.

Поскольку фазометр может однозначно измерять разность фаз в пределах до 2p, то максимальная дальность действия такого дальномера, определяемая из условия однозначного определения дальности, составляет rmax=l2p/(4p)= =0,5l, т.е. всего только половину используемой длины волны.

Абсолютная погрешность измерения дальности вследствие неточности измерения разности фаз Dy составляет

и может быть сделана сколь угодно малой за счет уменьшения длины волны. Но при этом пропорционально сокращается и максимальная дальность. Относительная погрешность измерения дальности

определяется относительной инструментальной погрешностью работы фазометра.

Легко видеть, что если на пути распространения излученной электромагнитной волны встретится не один отражающий объект, а хотя бы два, то от каждого из них на радиодальномер придет отраженный сигнал с разностью фаз, определяемой дальностью до этого объекта, и амплитудой, зависящей от дальности и площади его отражающей поверхности. Два сигнала, отраженные от указанных объектов, сложатся и образуют некоторый результирующий сигнал, фаза которого будет сложной функцией фаз и амплитуд слагаемых. Амплитуды последних заранее неизвестны и могут считаться случайными, что и обеспечивает случайность фазы результирующего сигнала. Фазометр дальномера будет измерять разность фаз этого результирующего и зондирующего сигналов, которая весьма сложным и случайным образом зависит от дальностей и эффективных отражающих поверхностей объектов. При этом фазовый дальномер будет измерять дальность до некоторого несуществующего объекта, которая пропорциональна указанной разности фаз результирующего и зондирующего сигналов. Таким образом, при наличии уже двух отражающих объектов показание фазового радиодальномера единственно и к тому же ошибочно. Следовательно, рассматриваемый фазовый радиодальномер может измерять дальность только до одного объекта, т.е. не обладает способностью определять дальности до двух и более разнесенных объектов или, как говорят, не обладает разрешающей способностью по дальности.

Частотный метод

В частотных дальномерах, как и во всех активных системах, дальность до объекта наблюдения измеряется по задержке принятого сигнала относительно зондирующего. Зондирующий сигнал — непрерывный, с частотной модуляцией. Задержка измеряется по изменению частоты между моментами приема и передачи (рис. 3.2).

 

 

В результате в любой фиксированный момент времени t1 частоты излученного и принятого сигналов различаются на некоторую величину Df.

Для нахождения связи между изменением частоты Df и задержкой t3 поло­жим, что на интервале задержки частота изменяется линейно —

. Тогда откуда

(3.1)

 

Разница частот выявляется как частота биений при подаче на нелинейный элемент (смеситель, детектор) принятого и зондирующего сигналов: Df = fб.

Закон изменения частоты излучаемых колебаний может быть различным, в частности гармоническим или пилообразным. Изменение частоты должно быть знакопеременным, так как частота ограниченный пригодный ресурс.

В частотном методе частотно-модулированный генератор ЧМГ (рис. 3.3) излучает зондирующий сигнал, частота которого модулирована по некоторому закону, например по закону симметричной линейной пилы (рис. 3.4):

;

,

при любом t,

где f0 – центральная частота сигнала; Df – девиация частоты; Т – период частотной модуляции.

 

 

После отражения электромагнитной волны этого сигнала от некоторого объекта, расположенного на дальности r, в приемную антенну поступит отраженный сигнал. Закон изменения его частоты (рис. 3.4) будет запаздывать от закона изменения частоты зондирующего сигнала на время t3 = 2r/с, т.е. .

Отраженный сигнал усиливается избирательным (полосовым) усилителем ИУ, суммируется с зондирующим сигналом и подается на амплитудный детектор АД, который выделяет огибающую биений между зондирующим и отраженным сигналами. Частота этих биений, очевидно, равна абсолютной величине разности частот этих сигналов (рис. 3.4):

.

Легко видеть, что максимальное значение этой разности

пропорционально дальности r отражающего объекта. Измеряя эту частоту с помощью специального измерителя частоты биений ИЧБ можно определить искомую дальность. Хотя указанный измеритель обычно измеряет не максимальную, а среднюю частоту биений, но поскольку обычно t3.<<Т, то различие указанных частот пренебрежимо мало.

Таким образом, измеряя частоту биений, возникающих в амплитудном детекторе при взаимодействии зондирующего и отраженного ЧМ сигналов, рассматриваемый частотный дальномер измеряет дальность до отражающего объекта.

Как видно из рисунка, частота биений остается постоянной большую часть периода модуляции ТМ и изменяется только в так называемых зонах обращения, длительность которых равна задержке t3 принятого сигнала относительно зондирующего. Обычно период модуляции выбирают значительно большим, чем максимальная ожидаемая задержка tзmax: tзmах <(0,01-0,02)Tм. Поэтому измеряемая частота биений fб определяется плоскими участками кривой на рис. 3.4. Для этих участков нетрудно получить, используя выражение (3.1)

. (3.2)

В соответствии с формулой (3.2) дальность прямо пропорциональна частоте биений, поэтому ИЧБ можно проградуировать в единицах дальности. Частотный метод измерения расстояния широко применяется в самолетных высотомерах, где используется его важное достоинство — отсутствие мертвой зоны. Максимальная измеряемая дальность находится из условия

.

Частотный дальномер, выходным устройством которого является измеритель частоты биений, может измерять дальность только до одного объекта и поэтому не обладает разрешающей способностью по дальности. Он обычно используется в качестве радиовысотомера малых высот и широко применяется в авиации. Для получения разрешения по дальности и возможности измерения дальности до многих объектов следует в частотном радиодальномере заменить измеритель частоты биений анализатором спектра.

Движение объекта приводит к появлению доплеровского смещения частоты принимаемого сигнала относительно излучаемого:

.

Рассмотрим влияние эффекта Доплера на работу частотного дальномера. Возможны два случая работы системы.

1. fд < fб (рис. 3.5). На рис. 3.5 штрихпунктирной линией показано изме­нение частоты принимаемого сигнала от неподвижного объекта наблюдения. Раз­ность между ней и сплошной линией, которая представляет частоту зондирующе­го сигнала, равна частоте биений fб, соответствующей дальности до объекта. Пунктирная линия смещена относительно штрихпунктирной вниз на частоту Доп­лера fд и характеризует частоту сигнала, принятого от подвижного объекта. Из рисунка видно, что в течение одной половины периода модуляции частота бие­ний принимает значение

fб1 = fб - fд

течение другой — fб2 = fб + fд

 

 

 

Частотомер измеряет среднюю частоту биений за период модуляции

Таким образом, при fД < fб доплеровское смещение частоты не влияет на среднюю частоту биений fб. ср, которая и измеряется частотомером. Ины­ми словами, движение объекта не влияет на измерение дальности до него.

2. fд >fб (рис 3.6). На рис. 3.6 сохранены те же обозначения, что и рис. 3.5. Из него следует, что в течение одной половины периода модуляции частота биений равна

fб1 = fД – fб

течение другой

fб2 = fД + fб

Средняя частота биений fб. ср, измеряемая частотомером, равна

 

 

Таким образом, в данном случае дальномер измеряет не дальность, а радиальную скорость. Для того чтобы дальномер измерял и дальность и радиальную скорость, надо иметь возможность раздельного измерения fб1, fб2 с помощью анализатора спектра и последующего их вычисления. Кроме того, необходимо иметь априорные сведения о соотношении между f6 и fД.





Поделиться с друзьями:


Дата добавления: 2015-10-20; Мы поможем в написании ваших работ!; просмотров: 1893 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2325 - | 2004 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.