Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Взаимосвязь моделей данных




Упомянутые модели данных равносильны в том смысле, что все, выразимое в одной из них, выразимо в остальных. Выбор той или иной модели обусловлен тем, насколько удобно использовать эту модель проектировщику-человеку для работы с реальными жизненными задачами и насколько эффективно можно реализовать работу с конкретной моде­лью на ЭВМ.

Географические информационные

Системы

Пример. Когда вы знакомитесь с новым для вас человеком, то один из первых вопросов часто связан с тем местом, где он родился, где живет. По ответу — названию географи­ческого региона — вы многое можете предположить о характере и привычках нового знакомого, и этот прогноз будет не беспочвенным.

Место обитания накладывает определенный отпечаток на человека. В народной мудрости это отражается в появлении устойчивых словосочетаний: сибирский характер, южный темперамент, северная сдержанность.

Пример. Если человек из Тюменской области, то он, скорее всего, сможет многое рассказать о нефтедобыче и тайге, если из Волгоградской — об истории Сталинградской битвы и особенностях выращивания бахчевых культур.

Это лишь небольшие примеры, которые демонстрируют, что география тесно взаимосвязана с историей, экономикой, политикой, культурой, демографией, геологией и многими другими сферами научной и практической деятельности.

Зная географическое положение какого-либо населенного пункта Земли, можно сделать выводы об уровне жизни насе­ления, структуре занятости, основных экологических проб­лемах, исторически сложившихся традициях и пр.

Существуют профессии, для которых карта — основной и часто единственный источник полной, точной и вполне до­стоверной информации. Это, например, штурманы, воен­ные, строители.


Пример. Возьмем проектировщиков шоссейных дорог. Сколько расчетов и прикидок нужно выполнить им только для того, чтобы выбрать лучший вариант прокладки дороги между двумя населенными пунктами! В этих расчетах приходится учитывать и рельеф местности (крутизна подъемов и спусков), и типы грунта, и требуемый объем земляных работ, и растительность на трассе (за порубку леса или отчуждение пашни полагается платить), и мно­гое другое. Информацию для расчетов можно получить, или, как говорят географы, снять с крупномасштабной карты местности.

Все реальные материальные объекты (реки и холмы, рощи и плотины) или события, связанные с объектом (полет самолета, изменение русла реки, разрастание города), име­ют координаты на поверхности Земли и их можно отобра­зить на карте. Известно, что карта — это очень наглядный способ описания территории.

В наше компьютеризированное время было бы удивитель­но, если бы компьютеры не использовались и для отображе­ния карт. С компьютерной картой, которую называют циф­ровой (или электронной), работать более интересно, чем с бумажной картой. Компьютерная карта имеет по сравнению с бумажной много дополнительных и полезных свойств: её можно легко масштабировать на экране компьютера, дви­гать в разные стороны, на ней легко рисовать и удалять объ­екты, можно печатать в привлекательном виде любые фраг­менты территории, выбрав объект мышью, запрашивать у компьютера имеющуюся информацию об объекте и т. п.

Первое основное направление применения цифровых карт на практике — автоматизация решения сложных и громоздких вычислительных задач в областях проектирова­ния и строительства, транспорта и связи, экологии и чрез­вычайных ситуаций и пр.

Второе направление — оперативное отображение обстанов­ки. Прежде всего это важно в военном деле, но не только. На­блюдать за постоянно меняющейся обстановкой должны дис­петчеры аэропортов, сотрудники органов гражданской обороны и чрезвычайных ситуаций и многие другие.

С постоянно меняющейся обстановкой связано и третье направление использования цифровых карт. Речь идет об издании обычных бумажных карт. До сих пор подготовка к изданию даже не очень сложной карты была делом весьма трудоемким — требовалось вручную нанести на пластик ее изображение. Затем, при переизданиях, тем же путем вно-


сились произошедшие изменения. Наличие цифровой карты делает этот процесс почти автоматическим. Стоит только указать, какими условными знаками изображать объекты местности, как карта будет готова к выводу. Картографу останется только подправить, подчистить (опять-таки на эк­ране) полученное изображение.

Научить машину читать карту — значит представить карту в виде, который легко и просто представлялся бы в памяти ЭВМ и был бы доступен анализу с помощью тради­ционных машинных операций. Здесь можно поступить так же, как в случае обработки изображений, то есть предста­вить карту в виде частой прямоугольной сетки точек, каж­дая из которых кодируется соответствующим цветом, и за­ложить всю последовательность этих кодов в память ЭВМ. Казалось бы, сделать это совсем нетрудно. Но научить ЭВМ анализировать совокупность разноцветных точек (ее стали называть растровой картой) именно как карту не удалось. В сущности, проблема машинного чтения карты не менее сложна, чем одна из главных задач искусственного интел­лекта — распознавание образов.

Другой путь — вместо изображения карты ввести в ЭВМ список всех изображенных на ней объектов, причем каждый из них должен обозначаться кодом, характеризующим тип объекта (например, река, лес, дом, дорога), и числами, опре­деляющими его координаты.

Хорошо, если объект невелик по размеру и его положение можно передать парой координат. А если он (например, река) представляет на карте длинную извилистую линию? Значит, вслед за кодом должна выстраиваться длинная цепочка коор­динат, определяющих положение некоторых точек этой реки. А как часто должны стоять эти точки? Понятно, что чем чаще, тем лучше, но память ЭВМ небеспредельна. Зна­чит, необходимо расставлять эти точки так, чтобы получить расположение объекта с некоторой точностью.

Этот способ компьютерного представления и хранения карты называют цифровой картой в векторной форме, или просто векторной картой.

По способу представления координат объекты векторной карты делятся на точечные (те, которые можно представить одной парой координат), линейные (для их представления по­требуется цепочка координат, определяющих расположение объектов) и площадные (они также представляются цепочкой координат, которые определяют границы этих объектов).


Какие объекты включаются в цифровые карты, целиком зависит от того, для решения каких задач создается карта.

Пример. Если вам надо найти кратчайшие дороги между города­ми, то для этого вполне достаточно цифровой карты, со­стоящей из изображений населенных пунктов и дорог. А для обнаружения мест наиболее частых аварий город­ского водопровода потребуется подробная карта подзем­ных коммуникаций.

Каждый, кто видел обычную топографическую карту, хо­рошо представляет себе, насколько она сложна. Как правило, один лист такой карты содержит изображения десятков ты­сяч объектов. И если нужна достаточно полная цифровая карта такого масштаба, то координаты объектов придется представлять последовательностями, каждая из которых, в свою очередь, может содержать тысячи многозначных чисел.

Поначалу цифровые карты изготавливали с помощью планшетов-кодировщиков. Оператор как бы обводил объек­ты положенной на планшет бумажной карты считывающим устройством, и координаты этих объектов автоматически за­носились в память машины. Чтобы создать цифровую карту таким способом, требовалось иногда до полугода работы.

Потом появились программы-векторизаторы. Помните растровые карты, о которых шла речь выше? Так вот, векто­ризаторы способны выделить и представить в виде последо­вательностей координат линии или пятна, содержащиеся на растре, а иногда и установить, что эта линия или пятно означают. Векторизаторы сняли с человека значительную часть работы, но все равно — создать цифровую карту по всем правилам может лишь человек.

Сами по себе цифровые карты никакого эффекта дать не могут. Увидеть их на экране дисплея и поработать с ними можно лишь с помощью специальных программ. Комплек­сы программных средств, позволяющих решать прикладные задачи с помощью цифровых карт, в сочетании с наборами самих карт называются географическими информационны­ми системами, или геоинформационными системами (ГИС). Отметим, что ГИС как программное обеспечение от­носится к категории сложнейших.

Как осуществляется работа пользователя с геоинформа­ционной системой?

Работая с ГИС, вы выводите на экран компьютера одну или несколько интересующих вас карт (схем, планов и так далее). Пользователь легко может менять детальность изображения, увеличивая или уменьшая отдельные элементы карты.


Пример. Выбрав на карте города нужное здание, вы можете выве­сти его крупным планом и рассмотреть пути подъезда к зданию.

Обычно имеется возможность управлять тематическим составом изображаемой информации.

Пример. На карте полезных ископаемых можно «отключить» ви­димость ненужных в данный момент видов ископаемых ресурсов и речной сети, оставив между тем видимой до­рожную сеть.

Указав объект на карте, можно получить информацию о нем.

Пример. Указав объект недвижимости, можно узнать его стои­мость, имя владельца, состояние объекта и пр. Выбрав находящееся поблизости промышленное предприятие, можно получить данные о его профиле, влиянии на эко­логию района и так далее.

Ряд геометрических характеристик объектов (длину ули­цы, расстояние между городами, площадь лесного массива) можно измерять непосредственно на экране, пользуясь сред­ствами ГИС.

Можно использовать ГИС как поисковую систему. В этом случае пользователь составляет запрос, в котором перечис­ляет интересующие его свойства объектов, а система выде­ляет на карте подходящие объекты.

Пример. Можно потребовать показать на карте земельные участ­ки площадью не менее 10 соток, расположенные не да­лее 3 км от железнодорожной станции и одновременно не далее 1 км от близлежащих водоемов.

Специальные средства позволяют проводить аналитиче­скую обработку данных, а в более сложных случаях — моде­лирование реальных событий. Результаты обработки можно увидеть на экране компьютера.

Пример. Специалисты могут оперативно спрогнозировать воз­можные места разрывов на трассе трубопровода, просле­дить на карте пути распространения загрязнений и оце­нить вероятный ущерб для природной среды, вычислить объем средств, необходимых для устранения последст­вий аварии. Наиболее сложные технологические реше­ния включают в себя экспертную поддержку и позволя­ют получать на выходе обоснованное заключение, пригодное для принятия конкретных решений.


Все, что пользователь видит на экране, при необходимо­сти может быть выведено на печатающее устройство и полу­чено в виде твердой копии, либо сохранено в виде стандарт­ного файла изображения и использовано впоследствии в качестве иллюстрации.

В определённом смысле в основе построения ГИС лежит СУБД. Однако, вследствие того, что пространственные дан­ные и разнообразные связи между ними плохо описываются реляционной (табличной) моделью, полная модель данных в ГИС имеет сложный смешанный характер. А вот информа­ция о свойствах объектов (называемая ещё семантической) часто представляется реляционными таблицами.

Большинство прикладных геоинформационных систем предназначены не для домашнего использования, а для ра­боты в крупных организациях и учреждениях, коллективам которых необходимо оперативно обрабатывать большие объёмы пространственной информации. В такой ситуации ГИС должна обеспечивать возможность работы с одним на­бором геоинформационных данных нескольким пользовате­лям (чаще всего в пределах локальной компьютерной сети). При решении геоинформационных задач городского масш­таба возникает необходимость обеспечить доступ к общим пространственным и семантическим данным разным пред­приятии и городским службам. Решение же геоинформаци­онных задач глобального характера возможно при использо­вании ГИС, размещенных не на одном, а на нескольких мощных компьютерах. В настояще время широко разраба­тываются геосистемы, использующие возможности Интер­нета.

Наиболее популярные ГИС: Arclnfo, Arcview, MGE, Geo-rnedia, Maplnfo, SICAD, Autodesk. Среди ГИС, работающих в среде Интернет специалисты отмечают такие средства для web-картографирования: ArcView Internet Map Server, Ma-pObjects IMS, MapXsite, MapXtreme, MapGuide, GeoMedia Web Map и др.

Отметим, что если вы поклонник компьютерных игр, то с ГИС вам приходилось не раз работать. Примером ГИС (хотя и очень упрощённой) можно считать игру SimCity, где игра­ющий строит город, а программа имитационного моделиро­вания территории показывает состояние различных город­ских служб и ресурсов (в том числе людских).


Рис. 2.4.1

Пример

цифровой

карты

Географические информационные системы (геоинформа­ционные системы, ГИС) — это комплексы программных средств, позволяющие решать прикладные задачи с помо­щью цифровых карт, в сочетании с наборами самих карт.

Геоинформационные системы призваны обеспечить эф­фективную обработку информации о самых разнообразных объектах на территории. Они предназначены для сбора, хра­нения, поиска и манипулирования данными о территориа­льных объектах.

Геоинформационные системы — это компьютерные сис­темы, позволяющие эффективно работать с пространственно распределенной информацией. Они являются расширением концепции баз данных, дополняют их наглядностью пред­ставления и возможностью решать задачи пространственно­го анализа.

Цифровая карта в векторной форме — построенная по четко зафиксированным правилам последовательность объ­ектов, представленных своими кодами и координатами.

Цифровые карты, являющиеся основой ГИС, обеспечива­ют: • точную привязку, систематизацию, отбор и объединение

всей поступающей и хранимой информации (единое ад­ресное пространство);


• комплексность и наглядность информации для принятия решений;

• возможность динамического моделирования процессов и явлений;

• возможность автоматизированного решения задач, свя­занных с анализом особенностей территории;

• возможность оперативного анализа ситуации в экстрен­ных случаях.

Построение ГИС основывается на идеях баз данных с раз-вивитием этих идей.

Модель данных в ГИС имеет сложный смешанный харак­тер: атрибутивная (семантическая) информация об объектах часто представляется реляционными таблицами, а про­странственные данные организуются специальным образом (послойным, объектно-ориентированным и пр. — различ­ным для разных ГИС).

Основные направления применения ГИС:

• автоматизация решения сложных и громоздких вычисли­тельных задач (проектирование, строительство, транс­порт, связь, экология, чрезвычайные ситуации, создание кадастров земель и природных ресурсов и т.п.);

• оперативное отображение обстановки (военное дело, дис­петчерские аэропортов, органы гражданской обороны и чрезвычайных ситуаций и др.);

. • издание обычных бумажных карт;

• историческое, социологическое, демографическое и др. исследования изменений, происходящих на данной тер­ритории;

• имитационное моделирование пространственных процес­сов;

• управление производственными процессами в рамках ав­томатизированных систем управления (АСУ). Возможности, предоставляемые пользователю ГИС:

• масштабирование карты на экране компьютера;

• дополнение и удаление объектов с карты;

• печать в заданом виде любых фрагментов территории;

• запрещение или разрешение в зависимости от решаемой задачи вывода на экран объектов определённого класса.

• вывод атрибутивной информации об объекте (его свойств, характеристик и пр.);

• обработка информации об объектах статистическими ме­тодами и отображение результатов такого анализа непо­средственным «наложением» их на карту.


Задание 1

Ответьте на вопросы:

а) Какой компонент геоинформационных систем можно рассмат­
ривать как системообразующий?

б) Почему эти системы получили название географических?
Пусть вся информация, которую мы можем получить об объек­
тах, представленных на цифровой карте, носит только историче­
ский характер. Можно ли по аналогии назвать систему, основой
которой является эта карта, исторической информационной сис­
темой?

в) Верно ли, что нельзя найти реальный материальный объект
или событие, связанное с объектом, которые бы не имели коор­
динат на поверхности Земли и которые нельзя было бы отобра­
зить на карте?

Задание 2

Данные, накапливаемые человечеством о реальных объектах и событиях нашего мира, в той или иной мере содержат «простран­ственную» составляющую (постоянные или переменные про­странственные координаты).

Для каких из перечисленных ниже объектов и явлений это утверждение справедливо?

а) поля и рощи;

б) граждане государства;

в) здания и сооружения;

г) транспортные магистрали;

д) инженерные коммуникации;

е) движущийся поезд, летящий самолёт и плывущий пароход;

ж) деталь и изделие, перемещаемые на территории заводского
цеха;

з)научная теория; и) компьютерная сеть; к) грозы и снегопады.

Задание 3

Автомобилисты практически всегда имеют в салоне атлас дорог. По оценкам специалистов в недалеком будущем он будет заменен компьютером, на дисплее которого этот атлас можно будет на­блюдать даже в процессе движения.

Опишите, как вы себе представляете электронный атлас автомо­бильных дорог. Не забудьте, что автомобиль кроме электронного


атласа должен быть оснащен системами глобального позициони­рования.

Системы глобального позиционирования (GPS) — спутниковые системы, благодаря сигналам от которых небольшие специаль­ные наземные приёмники показывают координаты своего место­нахождения.

Задание 4

С помощью электронного глобуса можно сравнить координаты границ частей света между собой.

Вы знаете, что северная граница США находится на широте Кие­ва, а южная оконечность Африки симметрична отностельно эк­ватора острову Крит?

Придумайте другие географические головоломки, которые можно легко решить с помощью цифровых карт Земли. Определите, ка­кими средствами для решения этих задач должны обладать ГИС, какие возможности они должны предоставлять пользователю.

Задание 5

В среде ГИС удобно отображать генпланы заводов, поэтажные планы цехов, помещений, технологические схемы движения из­делий между технологическими подсистемами, моделирование технологических процессов, развёрнутых в пространстве и т. п. Определите, для решения каких задач могут использоваться та­кого рода карты. Приведите примеры, когда использование ГИС в управлении предприятием дает значительные преимущества по сравнению с использованием для этих же целей СУБД тради­ционного типа.

Географические информационные системы появились в 1960-х годах XX века как инструменты для отображения географии Земли и расположенных на ее поверхности объ­ектов. При этом использовались компьютерные базы дан­ных. Следы самой первой геоинформационной системы те­ряются в недрах Министерства обороны США, сотрудники которого использовали ГИС для того, чтобы ракета, летя­щая в сторону противника, попала в этого самого противни­ка как можно точнее. Правда, существует и альтернативная версия: согласно ей, первая ГИС была создана в Канаде и первоначально использовалась в основном для целей земле­устройства.


В начале 70-х годов ГИС использовались для вывода ко-ординатно-привязанных данных на экран монитора и для печати карт на бумаге, чем значительно облегчили жизнь специалистам, прежде занятым традиционной бумажной картографией.

В 80-х годах появились системы управления пространст­венными базами данных, целью которых было связать сис­темы управления базами данных и компьютерное картогра­фирование. В этих системах пользователь уже мог, указав на объект на карте, получить некую содержательную инфор­мацию. Спрос на тематическую картографическую информа­цию заставил обратить внимание на проблему сбора данных. Результатом стала интегрированная среда: данные дистан­ционного зондирования, цифровая модель местности, карта дорог, геологическая карта и все прочие виды и типы карт мирно сосуществовали в рамках одной системы.

Одна из самых внушительных программ цифрового кар­тографирования осуществляется сегодня Федеральной служ­бой геодезии и картографии России. С 1993 года ведется ра­бота по созданию цифровых топографических карт, то есть наиболее полных и точных карт, территории нашей страны.

К основным направлениям развития современных ГИС относят:

1) интеграцию систем пространственного позиционирова­ния (GPS) и ГИС;

2) интеграцию ГИС с реляционными и сетевыми базами данных;

3) сетевые технологии, web-картографирование и ГИС-по-Интернет.

Пользователям требуются новые ГИС, позволяющие рабо­тать с пространственными данными в полевых условиях, од­ним из свойств работы в которых является определение гео­графических координат объекта, его высоту над уровнем моря, скорость, направление движения и другие параметры. Все эти данные должны интегрироваться в ГИС в реальном масштабе времени.


Системы географического позиционирования (GPS) — спутниковые системы, благодаря сигналам от которых небо­льшие специальные наземные приёмники легко могут пока­зывать координаты своего местонахождения. С помощью GPS объект может определить свои координаты на местнос­ти с погрешностью от сотен метров до миллиметров. Такими приемниками оснащаются самолеты и морские суда, их бе­рут с собой в поход туристы.

Легко представить, как комфортно чувствуют себя штур­маны кораблей (в том числе речных), где есть GPS-приёмник и ГИС с картой морей и рек. Нет никакой нужды определять своё местоположение по звёздам.

Если приёмник GPS связать с автомобильной ГИС, на ко­торой отображена карта, то водителю на экране автомобиль­ного компьютера можно наблюдать своё местоположение и направление движения. Если в ГИС ещё и задан планируе­мый маршрут, то весь такой комплекс может даже преду­преждать водителя, когда ему нужно свернуть и куда.

Наиболее быстро разивающимся направлением развития ГИС является использование сетевых технологий, web-кар­тографирование и ГИС-по-Интернет. Объединение двух технологий, неспроста, видимо, появившихся практически одновременно, привело к тому, что ГИС обрела принципиа­льно новые возможности. Программный продукт, возник­ший в результате слияния ГИС и Интернета носит название ГИС-по-Интернет и отличается от стандартных ГИС тремя принципиальными моментами:

• ГИС-по-Интернет может использоваться несколькими по­льзователями одновременно;

• данные могут храниться не на одной машине, а на неско­льких, что позволяет резко увеличить максимальный объем хранимых данных и, кроме того, использовать для анализа данные из нескольких источников одновременно;

• ГИС и ее пользователи могут находится на сколь угодно большом расстоянии друг от друга.

Эти отличия от традиционной геоинформационной систе­мы являются значительными преимуществами и позволяют использовать ГИС в принципиально новом качестве: из ин­струмента пространственного анализа ГИС превращается в инструмент управления пространственно распределенными проектами.






Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 840 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Есть только один способ избежать критики: ничего не делайте, ничего не говорите и будьте никем. © Аристотель
==> читать все изречения...

2250 - | 2202 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.