1. Laplante M., Sabatini D.M. mTOR signaling in growth control and disease // Cell. Elsevier. - 2012. - Vol. 149. - № 2. - P. 274–293.
2. Ma N. et al. TORC1 signaling is governed by two negative regulators in fission yeast // Genetics. - 2013. - Vol. 195. - № 2. - P. 457–468.
3. Kaminska M. et al. Dissection of the structural organization of the aminoacyl-tRNA synthetase complex // J. Biol. Chem. - 2009. - Vol. 284. - № 10. - P. 6053–6060.
4. Dias J. et al. Small-angle X-ray solution scattering study of the multi-aminoacyl-tRNA synthetase complex reveals an elongated and multi-armed particle // J. Biol. Chem. - 2013. - Vol. 288. - № 33. - P. 23979–23989.
5. Stewart B.W., Wild C.P. World Cancer Report 2014 // World Health Organization: Geneva. - 2014. - 953 p.
6. Lerman M.I., Minna J.D. The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium // Cancer Res. - 2000. - Vol. 60. - № 21. - P. 6116–6133.
7. Maitra A. et al. High-resolution chromosome 3p allelotyping of breast carcinomas and precursor lesions demonstrates frequent loss of heterozygosity and a discontinuous pattern of allele loss // Am. J. Pathol. - 2001. - Vol. 159. - № 1. - P. 119–130.
8. Imreh S., Klein G., Zabarovsky E.R. Search for Unknown Tumor-Antagonizing Genes // Genes Chromosom. Cancer. - 2003. - Vol. 38. - № 4. - P. 307–321.
9. Shiomi H. et al. Cytogenetic heterogeneity and progression of esophageal squamous cell carcinoma // Cancer Genet. Cytogenet. - 2003. - Vol. 147. - № 1. - P. 50–61.
10. Hesson L.B., Cooper W.N., Latif F. Evaluation of the 3p21.3 tumour-suppressor gene cluster // Oncogene. - 2007. - Vol. 26. - № 52. - P. 7283–7301.
11. Sekido Y. et al. Cloning of a breast cancer homozygous deletion junction narrows the region of search for a 3p21.3 tumor suppressor gene // Oncogene. - 1998. - Vol. 16. - № 24. - P. 3151–3157.
12. Li J. et al. Functional characterization of the candidate tumor suppressor gene NPRL2/G21 located in 3p21.3C // Cancer Res. - 2004. - Vol. 64. - № 18. - P. 6438–6443.
13. Schenk P.W. et al. Anticancer drug resistance induced by disruption of the Saccharomyces cerevisiae NPR2 gene: a novel component involved in cisplatin- and doxorubicin-provoked cell kill // Mol. Pharmacol. - 2003. - Vol. 64. - № 2. - P. 259–268.
14. Wistuba I.I. et al. High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints // Cancer Res. - 2000. - Vol. 60. - № 7. - P. 1949–1960.
15. Neklesa T.K., Davis R.W. A genome-wide screen for regulators of TORC1 in response to amino acid starvation reveals a conserved Npr2/3 complex // PLoS Genet. - 2009. - Vol. 5. - № 6. - P. e1000515.
16. Sancak Y. et al. PRAS40 Is an Insulin-Regulated Inhibitor of the mTORC1 Protein Kinase // Mol. Cell. - 2007. - Vol. 25. - № 6. - P. 903–915.
17. Wang L. et al. Mammalian target of rapamycin complex 1 (mTORC1) activity is associated with phosphorylation of raptor by mTOR // J. Biol. Chem. - 2009. - Vol. 284. - № 22. - P. 14693–14697.
18. Peterson T.R. et al. DEPTOR Is an mTOR Inhibitor Frequently Overexpressed in Multiple Myeloma Cells and Required for Their Survival // Cell. - 2009. - Vol. 137. - № 5. - P. 873–886.
19. Kim D.H. et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR // Mol. Cell. - 2003. - Vol. 11.. - P. 895–904.
20. Bar-Peled L. et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. // Science. - 2013. - Vol. 340. - № 6136. - P. 1100–1106.
21. Sancak Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1 // Science. - 2008. - Vol. 320. - № 5882. - P. 1496–1501.
22. Bar-Peled L., Sabatini D.M. Regulation of mTORC1 by amino acids // Trends Cell Biol. Elsevier. - 2014. - Vol. 24. - № 7. - P. 400–406.
23. Simos G. et al. The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. // EMBO J. - 1996. - Vol. 15. - № 19. - P. 5437–5448.
24. Motorin Y. a et al. Purification and properties of a high-molecular-mass complex between Val-tRNA synthetase and the heavy form of elongation factor 1 from mammalian cells. // Eur. J. Biochem. - 1991. - Vol. 201. - № 2. - P. 325–331.
25. Bec G. et al. Valyl-tRNA synthetase from rabbit liver. I. Purification as a heterotypic complex in association with elongation factor 1 // J. Biol. Chem. - 1989. - Vol. 264. - № 35. - P. 21131–21137.
26. Mansilla F. et al. Mapping the human translation elongation factor eEF1H complex using the yeast two-hybrid system. // Biochem. J. - 2002. - Vol. 365.. - P. 669–676.
27. Janssen G.M. et al. The subunit structure of elongation factor 1 from Artemia. Why two alpha-chains in this complex? // J. Biol. Chem. - 1994. - Vol. 269. - № 50. - P. 31410–31417.
28. Bec G., Kerjan P., Waller J.P. Reconstitution in vitro of the valyl-tRNA synthetase-elongation factor (EF) 1 beta gamma delta complex: Essential roles of the NH2-terminal extension of valyl-tRNA synthetase and of the EF-1 delta subunit in complex formation // J. Biol. Chem. - 1994. - Vol. 269. - № 3. - P. 2086–2092.
29. Brandsma M. et al. Valyl-tRNA synthetase from Artemia. Purification and association with elongation factor 1. // Eur. J. Biochem. - 1995. - Vol. 233. - № 1. - P. 277–282.
30. Cerini C. et al. A component of the multisynthetase complex is a multifunctional aminoacyl-tRNA synthetase. // EMBO J. - 1991. - Vol. 10. - № 13. - P. 4267–4277.
31. Arif A. et al. Two-Site Phosphorylation of EPRS Coordinates Multimodal Regulation of Noncanonical Translational Control Activity // Mol. Cell. - 2009. - Vol. 35. - № 2. - P. 164–180.
32. Sampath P. et al. Noncanonical function of glutamyl-prolyl-tRNA synthetase: Gene-specific silencing of translation // Cell. - 2004. - Vol. 119. - № 2. - P. 195–208.
33. Herbert C.J. et al. The NAM2 proteins from S. cerevisiae and S. douglasii are mitochondrial leucyl-tRNA synthetases, and are involved in mRNA splicing. // EMBO J. - 1988. - Vol. 7. - № 2. - P. 473–483.
34. Labouesse M. The yeast mitochondrial leucyl-tRNA synthetase is a splicing factor for the excision of several group I introns // Mol. Gen. Genet. - 1990. - Vol. 224. - № 2. - P. 209–221.
35. Houman F. et al. A prokaryote and human tRNA synthetase provide an essential RNA splicing function in yeast mitochondria. // Proc. Natl. Acad. Sci. - 2000. - Vol. 97. - № 25. - P. 13743–13748.
36. Han J.M. et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway // Cell. - 2012. - Vol. 149.. - P. 410–424.
37. Segev N., Hay N. Hijacking Leucyl-tRNA Synthetase for Amino Acid-Dependent Regulation of TORC1 // Mol. Cell. - 2012. - Vol. 46. - № 1. - P. 4–6.
38. Jung M.H. et al. Hierarchical network between the components of the multi-tRNA synthetase complex: Implications for complex formation // J. Biol. Chem. - 2006. - Vol. 281. - № 50. - P. 38663–38667.
39. Park B.J. et al. The haploinsufficient tumor suppressor p18 upregulates p53 via interactions with ATM/ATR // Cell. - 2005. - Vol. 120. - № 2. - P. 209–221.
40. Kwon N.H. et al. Dual role of methionyl-tRNA synthetase in the regulation of translation and tumor suppressor activity of aminoacyl-tRNA synthetase-interacting multifunctional protein-3 // Proc. Natl. Acad. Sci. - 2011. - Vol. 108. - № 49. - P. 19635–19640.
41. Ko Y.G. et al. Glutamine-dependent Antiapoptotic Interaction of Human Glutaminyl-tRNA Synthetase with Apoptosis Signal-regulating Kinase 1 // J. Biol. Chem. - 2001. - Vol. 276. - № 8. - P. 6030–6036.
42. Iakovenko I.N., Formaziuk V.E. Diadenosine oligophosphates: metabolic pathways and role in regulating the functional activity of cells // Biokhimiia. - 1993. - Vol. 58. - № 1. - P. 3–24.
43. Wahab S.Z., Yang D.C. Synthesis of diadenosine 5’,5''' -P1,P4-tetraphosphate by lysyl-tRNA synthetase and a multienzyme complex of aminoacyl-tRNA synthetases from rat liver. // J. Biol. Chem. - 1985. - Vol. 260. - № 9. - P. 5286–5289.
44. Yannay-Cohen N. et al. LysRS Serves as a Key Signaling Molecule in the Immune Response by Regulating Gene Expression // Mol. Cell. - 2009. - Vol. 34. - № 5. - P. 603–611.
45. Park S.G. et al. Dose-dependent biphasic activity of tRNA synthetase-associating factor, p43, in angiogenesis // J. Biol. Chem. - 2002. - Vol. 277.. - P. 45243–45248.
46. Kim M.J. et al. Downregulation of FUSE-binding protein and c-myc by tRNA synthetase cofactor p38 is required for lung cell differentiation // Nat. Genet. - 2003. - Vol. 34. - № 3. - P. 330–336.
47. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 // Nature. - 1970. - Vol. 227. - № 5259. - P. 680–685.