Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Определить в какой точке находится максимальное значение ЗЛП решая графическим способом




 

ABCDE – область допустимых значений.

 

а) А

б) B

в) С ДА

г) D

д) E

 

Определите разрешающий элемент в следующей симплексной таблице при решении задачи максимизации:

БП   СП
1 5 3
х4 х2 х6        
F   -2   -5

 

  1) 6; 2) 5; (ДА) 3) 7; 4) 3; 5) 0.

 

Определить будет ли данный план опорным, если нет, то почему:

Изображена таблица

 

а) будет НЕТ

б) не будет, т.к. не все клетки заполнены

в) не будет, т.к. не выполняется условие m+n-1 НЕТ

г) не будет, т.к. для некоторых занятых клеток …

 

Особенностью задач динамического программирования заключается в том, что:

дальнейшее состояние экономической системы зависит только от данного состояния и не зависит от предыстории данного состояния

 

Основные функциональные уравнения задачи оптимального распределения капиталовложений имеют:

а) fN(c) = qN(c)

fn(c) = max {qn (x) + fn-1 (c-x)} ДА

б) fN(c) = qN(c)

fn(c) = min {qn (x) + fn-1 (c-x)}

в) fN(c) = qN(c)

fn(c) = min {qn (x) + fn-1 (х-с)}

 

Оцените целесообразность включения в план нового вида продукции, нормы затрат ресурсов на единицу которого равны соответственно 3, 4, 2, а прибыль от реализации равна 40 ден.ед., если при решении задачи о производстве продукции при оптимальном использовании ресурсов было получено следующее решение

  f() = 5x1+3x2+x3 (max) (5; 0; 24; 4; 0; 0) (0; 9; 3; 0; 2; 0).   1) нецелесообразно; (ДА) 2) данное задача не разрешима; 3) целесообразно.

 

Оцените целесообразность закупки 10 единиц второго вида ресурса по цене 2,5 ден.ед., если при решении задачи о производстве продукции при оптимальном использовании ресурсов было получено следующее решение

  f() = 46x1+25x2+30x3 (max) (500;405; 0; 0; 0; 20) (4; 3; 0; 0; 0; 8).     1) нецелесообразно; 2) данное задача не разрешима; 3) целесообразно. (ДА)  

 

Оптимальной стратегией замены оборудования для оборудования возраста 4 года является:

fn (t)\ t            
f1 (t)            
f2 (t)            
f3 (t)            
f4 (t)            
f5 (t)            

а) 1 год f5(4) –замена; 2 год f4(1) –сохранение; 3 год f3(0) –сохранение; 4 год f2(1) –сохранение; 5 год f1(2) –сохранение. ДА

б) 1 год f1(4) –сохранение; 2 год f2(3) –замена; 3 год f3(1) –сохранение; 4 год f4(2) –сохранение; 5 год f5(3) –замена. НЕТ

в) 1 год f5(4) –замена; 2 год f4(1) –сохранение; 3 год f3(2) –сохранение; 4 год f2(3) –замена; 5 год f1(1) –сохранение.

г) 1 год f1(4) –сохранение; 2 год f2(3) –замена; 3 год f3(0) –сохранение; 4 год f4(1) –сохранение; 5 год f5(2) –сохранение.

д) 1 год f5(4) –замена; 2 год f4(0) –сохранение; 3 год f3(1) –сохранение; 4 год f2(2) –сохранение; 5 год f1(3) –сохранение.

 

При решении нелинейных задач командой Поиск решения Excel значение функции в начальной точке должно быть:

отлично от нуля, так как на каждом шаге итерационного процесса решения задачи проверяется достижение оптимального решения по формуле ∆f=fk+1 – fk / fk ≤ ε – заданная величина точности решения, а на нуль делить нельзя

При решении задачи динамического программирования:

а) она разбивается на шаги и процесс решения является ассоциативным;

б) строится характеристический многочлен;

в) процесс решения не является многошаговым;

г) она разбивается на шаги и нумерация шагов (этапов) осуществляется от конечного этапа к начальному; (ДА)

д) необходимо сложить значения переменных для каждого этапа.

 

При решении задачи транспортного типа на максимум были получены оценки свободных клеток В=1,0 следовательно:

Задача имеет …..ственное оптимальное решение ДА

 

План находящийся в данной таблице является

 

           
    4   7   1   5   2
    6   2   4   1   3
    5   6   7   4   8

 

  1) распределенным; 2) закрытым 3) опорным (ДА) 4) оптимальным.  

 

По данному опорному плану определить транспортные расходы:

         
      30 1 10 2
    20 4    
  20 2 5 6   5 3

а) 215 ДА

б) 230

в) 200

г) 254

д) 190

 

После приведения математической модели задачи линейной оптимизации к каноническому виду мы получаем:

F = 6x1 -3x2 +7x3 (min)

x1≥0, x3≥0

1) F = 6x1 -3x2 +7x3 (max) xj≥0, (j= ) 2) F = -6x1 +3() -7x3 (max) x1≥0, xj≥0, (j= ), x ≥0,
3) F =- 6x1 +3x2 -7x3 (max) xj≥0, (j= ) 4) F = -6x1 +3x2 -7x3 (max) xj≥0, (j= )

 

Переход к нехудшему опорному решению транспортной задачи можно осуществить:

а) методом потенциалов;

б) методом северо-западного угла;

в) методом наименьших квадратов;

г) методом функциональных уравнений.

 

Принцип оптимальности Беллмана для задачи в которой решается вопрос о том, как спланировать работу группы предприятий, чтобы экономический эффект от выделенных этим предприятиям дополнительных финансовых или материальных ресурсов был максимальным, формализуется в следующее функциональное уравнение динамического программирования.

1) (ДА)

2) fn(t)= max

3) fn(xn-1, un) = min (zn(xn-1, un)+fn-1(xn))

 

 

При решении пары двойственных задач (одна из которых задача об оптимальном использовании ресурсов) получен следующий результат:

f() = 20x1+10x2+9x3 (max); =(10; 0; 3; 0; 8; 0); =(2; 0; 4; 0; 5; 0). Значение прибыли, если в производство ввести 3 единицы наиболее дефицитного ресурса, будет равно

1) 2) 3) 4) (ДА) 5)
        другой ответ

 

 

Полученный план перевозок транспортной задачи является

 

           
    6   7   2   8   0
    4   10   5   3   0
    8   9   12   11   0

 

  1) вырожденным; 2) оптимальным; (ДА) 3) не опорным; 4) открытым.  

 





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 462 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2227 - | 2155 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.