Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Экстремумы функции, необходимые и достаточные признаки существования экстремума




Экстре́мум — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума.

Необходимое условие экстремума

Функция g(x) в точке имеет экстремум(максимум или минимум), если функция определена в двухсторонней окрестности точки и для всех точек x некоторой области: , выполнено соответственно неравенство

(в случае максимума) или (в случае минимума).

Экстремум функции находиться из условия: , если производная существует, т.е. приравниваем первую производную функции к нулю.

Достаточное условие экстремума

1) Первое достаточное условие:

Если:

а) f(x) непрерывная функция и определена в некоторой окрестности точки такой, что первая производная в данной точке равна нулю или не существует.

б) f(x) имеет конечную производную в окрестности задания и непрерывности функции

в) производная сохраняет определенный знак справа от точки и слева от этой же точки, тогда точку можно охарактеризовать следующим образом

Это условие не очень удобное, так как нужно проверять множество условий и запоминать таблицу, однако если ничего не сказано о производных высших порядках, то это единственный способ найти экстремум функции.

2) Второе достаточное условие

Если функция g(x) обладает второй производной причем в некоторой точке первая производная равна нулю, а вторая производная отлично от нуля. Тогда точка экстремум функции g(x), причем если , то точка является максимумом; если , то точка является минимумом.

3) Третье достаточное условие

Пусть функция g(x) имеет в некоторой окрестности точки N производных, причем значение первых (N - 1)- ой и самой функции в этой точке равно нулю, а значение N-ой производной отлично от нуля. В таком случае:

а) Если N - четно, то точка экстремум функции: у функции точка максимума, у функции точка минимума.

б) Если N - нечетно, то в точке у функции g(x) экстремума нет.

Наибольшее и наименьшее значение функции.

Наибольшим значением функции y = f(x) на промежутке X называют такое значение , что для любого справедливо неравенство .

Наименьшим значением функции y = f(x) на промежутке X называют такое значение , что для любого справедливо неравенство .

Эти определения интуитивно понятны: наибольшее (наименьшее) значение функции – это самое большое (маленькое) принимаемое значение на рассматриваемом интервале при абсциссе .

Стационарные точки – это значения аргумента, при которых производная функции обращается в ноль.

 





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 1398 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2254 - | 2184 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.