Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Использование неорганического фосфата в процессе брожения




ФЕРМЕНТЫ

ОКСИДОРЕДУКТАЗЫ

Методические указания к лабораторному практикуму

по дисциплине ”Биохимия"

для студентов специальностей Т.18.01., Т.18.02., Т.18.03.

Часть II. “Витамины и ферменты”

Могилев 2001


УДК 557.1

Рассмотрены и утверждены

на заседании кафедры ХТВМС

протокол № 10 от 18 мая 20001г.

 

Составители: доц. О.Н.Макасеева

асс. Л.М.Ткаченко

Рецензенты: проф. Г.Н. Роганов

доц. В.Н. Тимофеева

 

© Могилевский государственный технологический институт


 

Содержание

С

Введение.........................................................................................................4

1 НАД+- зависимые дегидрогеназы................................................................5

1.1 Использование неорганического фосфата в процессе брожения......6

1.2 Определение специфичности лактатдегидрогеназы............................8

2Флавиновые дегидрогеназы.........................................................................9

2.1 Качественное определение активности сукцинатдегидрогеназы....10

2.2Глюкозооксидаза (1.1.3.4)....................................................................12

2.3 Определение глюкозы с использованием фермента

глюкозоксиды..........................................................................................13

2.4 Открытие ксантиноксидазы в молоке.................................................14

3 Гемсодержащие ферменты - гемопротеины..........................................16 3.1Каталаза (1.11.1.6).................................................................................17

3.1.1 Обнаружение действие каталазы (качественно).............................17

3.1.2 Определение активности каталазы по А. Н. Баху и А.И.Опарину..............................................................................................18

3.2Пероксидаза (1.11.1.7)..........................................................................18

3.2.1 Обнаружение действия пероксидазы (качественно)......................19

Определение активности пероксидазы............................................20

4 Медь - содержащие оксидазы....................................................................21

4.1 Определение активности аскорбатоксидазы.....................................21

4.2 Полифенолоксидаза (1.14.18.1)...........................................................23

4.3 Обнаружение действия фенолоксидазы (качественно).....................24

4.4 Определение активности О–дифенолоксидазы

(полифенолоксидазы) и пероксидазы по Михлину и Броневицкой…..25

5 Список используемых источников...........................................................27

Приложение А...............................................................................................29

Приложение В............................................................................................30


Введение

К классу оксидоредуктаз относят ферменты, катализирующие окислительно–восстановительные реакции. Общая схема их может быть представлена следующим образом:

оксидоредуктаза

Субстрат + Акцептор ¾¾¾¾¾¾¾¾¾¾¾> Субстрат + Акцептор

АН2 В <¾¾¾¾¾¾¾¾¾¾¾ А ВН2

 

Характерной особенностью деятельности оксидоредуктаз в живой клетке является их способность образовывать системы (так называемые цепи окислительно–восстановительных ферментов), в которых осуществляется многоступенчатый перенос атомов водорода или электронов от первичного субстрата к конечному акцептору, которым является, как правило, кислород, так что в результате образуется вода.

Другая особенность оксидоредуктаз состоит в том, что, будучи двухкомпонентными ферментами с весьма ограниченным набором активных групп (коферментов), они способны ускорять большое число самых разнообразных окислительно–восстановительных реакций. Это достигается за счет того, что один и тот же кофермент способен соединяться со многими апоферментами (белками), образуя каждый раз оксидоредуктазу, специфическую по отношению к тому или иному субстрату или акцептору.

Еще одна, пожалуй, главная особенность оксидоредуктаз заключается в том, что они ускоряют протекание химических процессов, связанных с высвобождением энергии. Последняя используется как для обеспечения синтетических процессов в организме, так и для других нужд.

Оксидоредуктазы, которые переносят атомы водорода или электроны непосредственно на кислородные атомы, носят название аэробных дегидрогеназ или оксидаз. В отличии от них оксидоредуктазы, переносящие атомы Н или электроны от одного компонента окислительной цепи ферментов к другому без передачи их на кислородные атомы, называют анаэробными дегидрогеназами или редуктазами.

Подклассы оксидоредуктаз определяются типами соединений, выступающих в качестве доноров электронов. Например, ферменты подкласса 1 катализируют окисление гидроксигрупп до карбонильных, подкласса 2 - окисление карбонильных до карбоксильных и т.д.

В отдельные подклассы выделены ферменты (оксигеназы), катализирующие реакции введения атомов кислорода - одного, подкласс 14 (монооксигеназы) - двух, подкласс 13 (диоксигеназы) из молекулы О2.

В данном методическом указании рассмотрены более подробно строение и механизм действия оксидоредуктаз, имеющих важное значение в процессах технологической переработки пищевого сырья и при его хранении. Не менее важна роль этих ферментов в процессах дыхания живых организмов, окисления органических соединений - углеводов, липидов, белков, снабжающих клетку энергией.

 

1 НАД+- зависимые дегидрогеназы

Ферменты, катализирующие реакции окисления-восстановления с участием никотинамидадениндинуклеотида (НАД+), или его близкого аналога - никотинамидадениндинуклеотидфосфата (НАДФ+).

Более половины известных в настоящее время оксидоредуктаз содержат НАД+ или НАДФ+ в качестве кофермента, т.е являются двухкомпонентными, их называют пиридинпротеином. Пиридинпротеины способны отнимать от субстратов (спирты, альдегиды, кетокислоты, амины и др.) и включать в молекулу НАД+ (НАДФ+) 2 электрона и один протон (гидрид ион Н-) (окисляя, таким образом, указанные соединения, а второй протон остается в среде, в результате чего утрачивается положительный заряд пиридинового цикла НАД+ (НАДФ+):

 

Н   Н Н
½   \ /
С O   С O
// \ //   / \ //
Н¾ С C ¾С- NH2   Н¾ С C ¾С- NH2
½ | |   | | | |
Н¾- С C- Н   Н¾- С C- Н
О \\ + /   О \ /
|| N   || N
НО-Р- О-СН2 О   НО-Р- О-СН2 О
½ NН2 +2Н   ½ NН2
½ Н Н ½   ½ Н Н ½
О Н ½ ½ Н N C [ 2Н+,2е; Н-, Н+] О Н ½ ½ Н N C
½ НО НО // \ / \\   ½ НО НО // \ / \\
НО-Р= О Н-C C N   НО-Р= О Н- C C N
½ ½ || ½   ½ ½ || ½
О-¾ СН2 О N¾¾C CН   О -¾ СН2 О N¾¾C CН
½ \ //   ½ \ //
½ Н Н N   ½ Н Н N
Н ½ ½ Н Н3РО4   Н ½ ½ Н Н3РО4
НО О(Н)   НО О(Н)

НАД+ (НАДФ+ ) НАДН (НАДФН)

 

Все пиридинпротеины являются анаэробными дегидрогеназами, т.е не передают снятые с субстрата атомы водорода на кислород, а передают их на ближайший в окислительной цепи другой фермент, как правило, флавопротеид.

Кофермент НАДФ+ является производным НАД+, у которого водород ОН - группы 2-го углеродного атома рибозы аденозина замещен на остаток фосфорной кислоты. Механизм окисления (своих субстратов) при участии НАДФ+ в качестве кофермента аналогичен таковому при посредстве НАД+.

Несмотря на то, что реакции, катализируемые НАД+ и НАДФ+ зависимыми ферментами - дегидрогеназами обратимы, их биологическое значение в большинстве случаев связано, преимущественно, с протеканием реакции в определенном направлении. При этом отчетливо проявляется такая закономерность: если биологически значимо окисление субстрата, то в реакции в качестве окислителя чаще всего участвуют НАД+ . Если же реакция этого подкласса имеет значение для восстановления какого - либо органического соединения, то чаще всего восстановителем является НАДФН.

 

Использование неорганического фосфата в процессе брожения

Процессы диссимиляции углеводов в растительных организмах, микроорганизмах, а также в организмах животных и человека как в анаэробных, так и в аэробных условиях протекают с участием неорганического фосфата.

Молекула фосфорной кислоты включается на стадии окисления 3 –фосфоглицеринового альдегида в 1,3–дифосфоглицериновую кислоту при участии НАД+ зависимой глицеральдегидфосфатдегидрогеназы.

О       О  
/ /       / /  
С¾ Н +   глицеральдегид- С¾О ~ (Р) +
½ + НАД + Н3РО4 ¾¾¾¾¾¾¾> ½ + НАДН+Н
Н¾С¾ОН     фосфатдегидро- Н¾С¾ОН  
½     геназа ½  
СН2 ¾О(Р)       СН2 ¾О(Р)  

3- фосфоглицериновый 1,3 - дифосфоглицериновая

альдегид кислота

 

1,3–дифосфоглицериновая кислота представляет собой высокоэнергетическое соединение (макроэргическая связь условно обозначена значком ~ “тильда”). Далее происходит передача богатого энергией фосфатного остатка на АДФ с образованием АТФ и 3 - фосфоглицериновой кислоты:

О       О  
/ /     +2 / /  
С¾ О ~ (Р)     Мg С ¾ ОН  
½ + АДФ   ¾¾¾¾¾¾¾> ½ + АТФ  
Н¾С¾ ОН ½ СН2 ¾О-(Р)     <¾¾¾¾¾¾¾¾¾¾¾ фосфоглицераткиназа Н¾С¾ОН ½ СН2¾О-(Р)  

1,3 - дифосфоглицериновая 3 - фосфоглицериновая

кислота кислота

 

АТФ участвует в фосфорилировании углеводов - в образовании метаболически активных форм сахаров - их фосфорных эфиров, например, из глюкозы путем фосфорилирования образуется глюкозо–6–фосфат под действием фермента гексокиназы:

 

Мg2+

АТФ + L-D-глюкоза ¾¾¾¾¾> АДФ + L-D-глюкоза- 6 - фосфат

гексокиназа

Глюкозо–6–фосфат превращается во фруктозо–6–фосфат под действием фермента фосфоглюкоизомеразы. Далее фруктозо–6–фосфат фосфорилируется при участии еще одной молекулы АТФ и фермента фосфофруктокиназы во фруктозо–1,6–дифосфат.

Принцип метода. Если в начале брожения и в процессе взять одинаковые пробы и проделать качественную реакцию (молибденовую) на фосфорную кислоту, то окажется,что интенсивность образующейся синей окраски в пробах убывает от первой к последней. Это обусловлено тем, что неорганический фосфат постепенно поглощается и количество его в среде уменьшается.

Количество же связанного фосфата в органической форме (АТФ, глюкозо–6–фосфат, фруктозо–6–фосфат и др.) увеличивается. Если пробы подвергнуть гидролизу, то органические соединения фосфора разрушаются и количество неорганического фосфата во всех пробирках будет равно начальной величине – окраска в пробирках будет одинаковой.

Химизм молибденовой реакции на фосфорную кислоту заключается в образовании комплексного соединения 12 молибдофосфата аммония (осадок желтого цвета), которое при добавлении аскорбиновой кислоты восстанавливается с образованием молибденовой сини (смесь окислов молибдена).

Молибденовая реакция на фосфорную кислоту:

 

РО4–3+ 3 NH4++ 12 МоО4–2 + 24 Н+¾® (NH4)3РО4 . 12 МоО3 + 12 Н2О

Ход работы. В четыре пронумерованные пробирки наливают по 1 мл 10 % раствора трихлоруксусной кислоты (ТХУ). В ступке растирают 1 г отмытых и отделенных на воронке Бюхнера дрожжей с 1 г глюкозы или сахарозы и 5 мл дистиллированной воды. К смеси добавляют 5 мл раствора фосфорнокислых солей, перемешивают и 1 мл смеси переносят в первую пробирку с ТХУ. При этом осаждаются белки, инактивируются ферменты и прекращается брожение.

Оставшуюся смесь переносят в высокий стаканчик и помещают в термостат при 37 °С на 1,5 часа. Через каждые 0,5 часа от начала брожения отбирают из стаканчика по 1 мл бродящей смеси в три пробирки с ТХУ. Через 5 минут после взятия последней пробы содержимое пробирок фильтруют через складчатые фильтры в 4 пронумерованные колбочки и получают безбелковые фильтраты.

В четыре чистые пробирки отбирают по 0,5 мл безбелкового фильтрата из колбочек и проводят молибденовую реакцию на фосфорную кислоту. Для этого в каждую пробирку вносят по 0,1 мл 2,5 % – ного раствора молибденовокислого аммония в серной кислоте и 0,5 мл 0,5 %–ного раствора аскорбиновой кислоты, перемешивают и оставляют на 15 минут. Затем в каждую пробирку добавляют по 8 мл дистиллированной воды, перемешивают и сравнивают окраску жидкости во всех пробирках. Интенсивность окраски должна уменьшаться от первой к четвертой пробирке, так как неорганический фосфат в процессе брожения убывает.

Для гидролиза образовавшихся органических соединений фосфора в четыре пронумерованные пробирки (второй ряд) вносят из колбочек по 0,5 мл безбелкового фильтрата и добавляют по 0,5 мл 2 н. раствора соляной кислоты и ставят в кипящую водяную баню на 8–10 минут. По окончании гидролиза во всех пробирках проделывают молибденовую реакцию.

Результаты работы заносят в таблицу 1, изображая интенсивность окраски знаками +1; +2; +3; +4.

 

Таблица 1 – Интенсивность окраски молибденовой реакции

В процессе брожения

 

Показатели № пробирок и время взятия проб
  до брожения через 30 минут через 60 минут через 90 минут
Реакция на ионы РО4-3 до гидролиза        
Реакция на ионы РО4-3 после гидролиза органических соединений фосфора        

 

Материалы и реактивы: дрожжи; 10 %–ный раствор трихлоруксусной кислоты; глюкоза или сахароза; фосфорнокислые соли, раствор (см. Приложение В,п.1); молибденовый аммоний, 2,5 % раствор в 10 % растворе серной кислоты; 0,5 %–ный раствор аскорбиновой кислоты; 2 н. раствор соляной кислоты.

Оборудование: фарфоровые ступки; пробирки; пипетки на 1 мл; колбы; термостат; водяная баня.

 





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 640 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студенческая общага - это место, где меня научили готовить 20 блюд из макарон и 40 из доширака. А майонез - это вообще десерт. © Неизвестно
==> читать все изречения...

2350 - | 2305 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.