Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Источник ЭДС и источник тока в электрических цепях




При расчете и анализе электрических цепей реальный источник электрической энергии с конечным значением величины внутреннего сопротивления r 0 заменяют расчетным эквивалентным источником ЭДС или источником тока.

Рис. 1.14

 

Источник ЭДС (рис. 1.14) имеет внутреннее сопротивление r 0, равное внутреннему сопротивлению реального источника. Стрелка в кружке указывает направление возрастания потенциала внутри источника ЭДС.

Для данной цепи запишем соотношение по второму закону Кирхгофа

E = U + Ir 0 или E = UIr 0. (1.10)

Эта зависимость напряжения U на зажимах реального источника от тока I определяется его вольт-амперной или внешней характеристикой (рис. 1.15). Уменьшение напряжения источника U при увеличении тока нагрузки I объясняется падением напряжения на его внутреннем сопротивлении r 0.

Рис. 1.18 Рис. 1.19

Уменьшение тока нагрузки I при увеличении напряжения U на зажимах ab источника тока, объясняется увеличением тока I 0, замыкающегося в цепи источника тока.

В идеальном источнике тока r 0>> R н. В этом случае можно считать, что при изменении сопротивления нагрузки R нпотребителя I 0≈0, а II к. Тогда из выражения (1.11) следует, что вольт-амперная характеристика I (U) идеального источника тока представляет прямую линию, проведенную параллельно оси абсцисс на уровне I = I к= E / r 0 (рис. 1.19).

При сравнении внешних характеристик источника ЭДС (рис. 1.15) и источника тока (рис. 1.18) следует, что они одинаково реагируют на изменение величины сопротивления нагрузки. Покажем, что в обоих случаях ток I в нагрузке определяется одинаковым соотношением.

Ток в нагрузке R н для схем источника ЭДС (рис. 1.14) и источника тока (рис. 1.17) одинаков и равен

Для схемы (рис. 1.14) это следует из закона Ома, т.к. при последовательном соединении сопротивления r 0 и R н складываются. В схеме (рис. 1.17) ток распределяется обратно пропорционально сопротивлениям r 0 и R н двух параллельных ветвей. Ток в нагрузке R н

т.е. совпадает по величине с током при подключении нагрузки к источнику ЭДС. Следовательно, схема источника тока (рис. 1.17) эквивалентна схеме источника ЭДС (рис. 1.14) в отношении энергии, выделяющейся в сопротивлении нагрузки R н, но не эквивалентна ей в отношении энергии, выделяющейся во внутреннем сопротивлении источника питания.

Каким из двух эквивалентных источников питания пользоваться, не играет существенной роли. Однако на практике, особенно при расчете электротехнических устройств, чаще используется в качестве источника питания источник ЭДС с внутренним сопротивлением r 0 и величиной электродвижущей силы E.

В тех случаях, когда номинальное напряжение или номинальный ток и мощность источника электрической энергии оказываются недостаточными для питания потребителей, вместо одного используют несколько источников. Существуют два основных способа соединения источников питания: последовательное и параллельное.

Последовательное включение источников питания (источников ЭДС) применяется тогда, когда требуется создать напряжение требуемой величины, а рабочий ток в цепи меньше или равен номинальному току одного источника ЭДС (рис. 1.20).

Рис. 1.20

Для этой цепи на основании второго закона Кирхгофа можно записать

E 1+ E 2+ E 3= I (r 01+ r 02+ r 03+ R н),

откуда

Таким образом, электрическая цепь на рис. 1.20 может быть заменена цепью с эквивалентным источником питания (рис. 1.21), имеющим ЭДС E э и внутреннее сопротивление r э.

 

Рис. 1.21 Рис. 1.22

 

При параллельном соединении источников (рис. 1.22) соединяются между собой положительные выводы всех источников, а также их отрицательные выводы. Характерным для параллельного соединения является одно и то же напряжение U на выводах всех источников. Для электрической цепи на рис. 1.22 можно записать следующие уравнения:

I = I 1+ I 2+ I 3; P = P 1+ P 2+ P 3= UI 1+ UI 2+ UI 3= UI.

Как видно, при параллельном соединении источников ток и мощность внешней цепи равны соответственно сумме токов и мощностей источников. Параллельное соединение источников применяется в первую очередь тогда, когда номинальные ток и мощность одного источника недостаточны для питания потребителей. На параллельную работу включают обычно источники с одинаковыми ЭДС, мощностями и внутренними сопротивлениями.

 

Делитель напряжения

Для уменьшения значения входного (питающего) напряжения используют делитель напряжения на резисторах. В нём, выходное напряжение Uвых зависит от значения входного (питающего) напряжения Uвх и значения сопротивления резисторов. Делитель напряжения – наиболее часто применяемое соединение резисторов. Например, переменный резистор, используемый в качестве регулятора громкости Ваших компьютерных колонок, является делителем напряжения с изменяемыми сопротивлениями плеч, где он выполняет роль ограничителя амплитуды входного сигнала.

Так как, сопротивление нагрузки влияет на выходное напряжение Uвых делителя, для обеспечения точности делителя напряжения, необходимо выполнять правило (2):

Значение резистора R2 должно быть приблизительно на два порядка меньше (в 100 раз) сопротивления нагрузки подключаемой к выходу делителя.

Используя закон Ома, и пренебрегая малым током нагрузки, делитель напряжения можно описать соотношением:

Преобразовывая указанную формулу, можно определить:

1. Выходное напряжение Uвых по известным значениям входного напряжения Uвх и сопротивлений резисторов R1, R2:

2. Входное напряжение делителя Uвх, по известным значениям выходного напряжения Uвых и сопротивлений резисторов R1, R2:

3. Значение R1 по известным значениям входного напряжения Uвх, выходного напряжения Uвых и сопротивления резистора R2:

4. Значение R1 и R2 по известным значениям входного напряжения Uвх, выходного напряжения Uвых и входного (общего) сопротивления делителя Rобщ, где Rобщ = R1 + R2:

 

Делитель тока

Делитель тока на резисторах предназначен для того, чтобы, не изменяя общего тока протекающего через электрическую цепь, часть его направить в другое плечо делителя, а после выполнения определённой функции вернуть эту часть обратно.

Где применяется делитель тока? Делитель тока применяется в измерительных приборах, когда необходимо измерить большой ток (единицы, или сотни Ампер) прибором, рассчитанным на маленький ток (миллиамперы или даже микроамперы). В этом случае, внутреннее сопротивление измерительного прибора выступает в качестве одного из резисторов, а второй резистор в таком случае называют "шунтом", так как он шунтирует проходящий ток (основная часть тока бежит через него). Шунт в схеме измерения имеет сопротивление, которое намного меньше внутреннего сопротивления измерительного прибора. Кроме того, делитель тока применяется в различных схемах автоматического регулирования, использующих в качестве контролируемого параметра - ток, проходящий через электрическую цепь. Делитель тока может применяться в различных каскадах передачи, или усиления тока, когда один пассивный, или усилительный элемент по своим электрическим параметрам не способен обеспечить прохождение через него большого тока. В этом случае их подключают параллельно, разделяя ток на равные доли (пополам).

Изобразим цепь делителя тока:

На рисунке видно, что общий входящий ток делится на два, и проходя цепь, снова объединяется в один.

Расчёт делителя тока на резисторах основывается на законе Ома, правиле сложения токов (законе Кирхгофа) и формуле параллельного соединения резисторов:

, ,

Выведем закон Ома для этой цепи. Его можно записать в следующем виде:

Преобразовывая указанные формулы, можем определить:

1. Определить ток I1 и I2 в плечах резисторов R1, R2 по известным значениям общего тока Iобщ и сопротивлений резисторов R1, R2:

2. Расчитать шунт R2 в цепи измерительного прибора, при известных: внутреннем сопротивлении R1, максимальном токе обмотки катушки прибора I1 и максимальном значении общего тока Iобщ цепи делителя тока, представленного на схеме:





Поделиться с друзьями:


Дата добавления: 2015-10-19; Мы поможем в написании ваших работ!; просмотров: 853 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Настоящая ответственность бывает только личной. © Фазиль Искандер
==> читать все изречения...

2340 - | 2066 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.