Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Преобразование линейных пассивных электрических цепей




Эквивалентное преобразование части пассивной электрической цепи состоит в такой ее замене другой пассивной цепью, при которой остаются неизменными токи и напряжения остальной цепи, не подвергшейся преобразованию. К простейшим преобразованиям относятся замена последовательно и параллельно соединенных потребителей эквивалентным потребителем.

При последовательном соединении роль эквивалентного сопротивления (или сопротивления эквивалентного потребителя) играет сумма сопротивлений всех потребителей (рис. 1.11.).

 

 

или (1.32)

Это следует из II закона Кирхгофа:

(1.33)

При двух последовательно соединенных потребителях:

(1.34)

При параллельном соединении роль эквивалентной проводимости (или проводимости эквивалентного потребителя) играет сумма проводимостей всех потребителей (рис. 1.12.).

 

(1.13)

Это следует из I закона Кирхгофа:

 

При двух параллельно соединенных потребителях:

(1.14)

Таким образом, для расчета цепей с последовательно включенными потребителями целесообразно их свойства выражать значениями сопротивлений, а для параллельно включенных – значениями проводимостей.

Определение эквивалентного сопротивления при смешанном соединении потребителей выполняется путем постепенного упрощения (сворачивания) исходной цепи.

Пример.

Параллельное соединение R1 и R2:

Последовательное соединение R12 и R3:

Последовательное соединение R4 и R5:

Параллельное соединение R123 и R45:

Последовательное соединение Rас и R6:

Таким образом, эквивалентное сопротивление

Более сложными являются взаимные преобразования потребителей, соединенных звездой или треугольником. К таким преобразованиям следует обращаться в тех случаях, когда в цепи, подлежащей упрощению, нельзя выделить параллельное или последовательное соединения потребителей.

 

В узлах a, b, c и треугольник, и звезда на рис. 1.14 соединяются с остальной частью схемы. Преобразование треугольника в звезду должно быть таковым, чтобы при одинаковых значениях потенциалов одноименных точек треугольника и звезды притекающие к этим точкам токи были одинаковы, тогда вся внешняя схема «не заметит» произведенной замены.

Выразим Uab треугольника через параметры потребителей и притекающие к этим узлам токи. Запишем уравнения Кирхгофа для контура и узлов a и b.

Заменим в первом уравнении токи I3 и I2 на соответствующие выражения:

По закону Ома напряжение Uab для соединения потребителей треугольником:

(1.15)

Теперь получим выражение для этого же напряжения при соединении потребителей звездой:

(1.16)

Для эквивалентности данных цепей при произвольных значениях токов Ia и Ib необходимо равенство напряжений Uab для соединения потребителей треугольником и звездой. Это возможно только при одинаковых коэффициентах уравнений (1.15) и (1.16), т.е.

(1.17)

Аналогично можно получить выражения для определения :

(1.18)

Таким образом, сопротивление луча звезды равно произведению сопротивлений прилегающих сторон треугольника, деленному на сумму сопротивлений трех сторон треугольника.

Формулы обратного преобразования можно вывести независимо, либо как следствие соотношений (1.17) и (1.18) через проводимости:

(1.19)

или через сопротивления:

(1.20)

Следовательно, сопротивление стороны треугольника равно сумме сопротивлений прилегающих лучей звезды и произведения их, деленного на сопротивление третьего луча.





Поделиться с друзьями:


Дата добавления: 2015-10-19; Мы поможем в написании ваших работ!; просмотров: 495 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2239 - | 2072 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.