Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Среднее арифметическое, выборочное среднее (mean)




Эта величина получается делением суммы всех имеющихся значений переменной на число значений.

 

Среднее арифметическое задается формулой

 

 

где Xi полученные значения переменной X, п — число наблюдений (размер выборки).

 

Обычно среднее значение — устойчивый показатель и заметно не изменяется при добавле­нии или вычитании значений данных. Для частот, представленных в табл. 15.2, среднее ариф­метическое вычисляют следующим образом:

 

Мода (mode) — значение переменной, встречающееся чаще других. Представляет наивыс­шую точку (пик) распределения. Мода хороший показатель центра распределения, если пере­менная имеет категорийный характер, или, иначе говоря, ее можно разбить на категории.

Мода (mode)

Значение переменной, которое чаще всего встречается в выборочном распределении.

Медиана (median) выборки — это значение переменной в середине ряда данных, располо­женных в порядке возрастания или убывания. Положение медианы определяется ее номером. Если число данных четное, то медиана равна полусумме двух серединных значений. Медиана — это 50-й процентиль. Она характеризует положение центра распределения порядковых данных. В табл. 15.2 медиана равна 5,000.

Медиана (median)

Значение переменной, которое приходится на середину распределения частот, т.е. одна половина всех значений больше медианы, а другая половина - меньше.

 

Как видно из табл. 15.2, три показателя, характеризующих положение центра распределения для рассматриваемого нами примера, различны (среднее значение — 4,724; мода— 6,000; медиана — 5,000). И это неудивительно, поскольку каждый показатель определяет центр распределения по-разному. Какой же показатель использовать? Если переменную измеряют по номинальной шкале, то лучше использовать моду. Если переменную измеряют по порядковой шкале, то больше подходит медиана. Если же переменную измеряют по интервальной или относительной шкале, то мода плохо отражает положение центра распределения. Это можно увидеть из табл. 15.2. Хотя значение моды, равное 6,000, отражает наивысшую частоту, оно представляет только 27,6% выборки. Медиана лучше подходит в качестве показателя, характеризующего положение центра распределения, для интервальной или относительной шкалы, хотя и она не учитывает имеющуюся информацию о переменной. Текущие значения переменной до и после медианы игнорируются. Самый лучший показатель для интервальной или относительной шкалы — среднее арифметическое. Он учитывает всю доступную информацию, поскольку для его вычисления используются все значения. Однако среднее арифметическое чувствительно к выбросам значений (экстремально малым или экстремально большим значениям). Если данные содержат выбросы, то среднее не будет хорошим показателем центра распределения и лучше использовать два показателя — среднее и медиану.

Показатели вариации

Показатели вариации (изменчивости) (measures of variability), вычисляемые на основании данных, измеряемых с помощью интервальных или относительных шкал, включают размах вариации, межквартильный размах, дисперсию, стандартное отклонение и коэффициент вариации.





Поделиться с друзьями:


Дата добавления: 2015-10-19; Мы поможем в написании ваших работ!; просмотров: 1084 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

2300 - | 2053 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.