Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Формула полной вероятности и формула Байеса




Пусть имеется полная группа несовместных событий , , …, с известными вероятностями , , …, . Событие A может наступить только при появлении одного из событий , причем известны условные вероятности , , …, . Найти вероятность события A по этим данным позволяет формула полной вероятности:

.

 

Пример. Предполагается произвести два выстрела в цель из орудия. Необходимо оценить вероятность события A: «разрушение цели», если вероятности попадания снаряда в цель:

- 0 снарядов ; - 1 снаряда ; - 2 снарядов ,

и вероятности разрушения цели при попадании в нее

- 0 снарядов ; - 1 снаряда ; - 2 снарядов .

Так как события составляют полную группу, то вероятность разрушения цели:

 

Пусть теперь событие A может, по-прежнему, наступить с одним из несовместных событий , , …, , образующих полную группу. Пусть в результате какого-то из испытаний событие A произошло. Возникает вопрос, как изменятся условные вероятности событий , , …, , т.е. в результате наступления события A?

 

Ответ на этот вопрос дает формула Байеса

,

где – полная вероятность события A.

 

Пример. По цели было произведено два выстрела, и цель была поражена. Используя данные предыдущего примера, требуется найти вероятности , , получения ровно 0, 1 и 2 попаданий.

Вероятность полного отсутствия попаданий:

.

Вероятности одного или двух попаданий:

; .

 

Видно, что вероятности событий после разрушения цели изменились, точнее, изменились их условные вероятности, хотя события по-прежнему составляют полную группу.

 

Формула Байеса широко применяется при решении проблем с недостаточной информацией: пусть имеется несколько несовместных предположений (гипотез), которые надо проверить с помощью опыта. Перед началом опыта далеко не всегда можно определить вероятности этих гипотез, которые называют доопытными или априорными вероятностями. Этими вероятностями приходится задаваться, исходя из какого-то опыта или просто по интуиции. Как только опыт проведен, появляется информация, с помощью которой можно произвести коррекцию априорных вероятностей.

 

Таким образом, основываясь на результатах опыта, заменяют априорные вероятности послеопытными (или апостериорными). Надо учитывать, что вероятности отдельных гипотез после опыта могут сильно измениться и даже уменьшиться настолько, что ими можно пренебречь, т.е. в нашем примере – отбросить гипотезу . После коррекции эксперимент можно продолжать (повторять опыт), продолжая уточнять вероятности гипотез. По мере уточнения производится обоснованное изменение различных решений практических задач, оперативных планов работы и т.п.

 

Случайные величины

Случайной называется величина, которая в результате опыта может принимать различные заранее не известные значения.

Случайные величины можно разделить на два основных вида – дискретные и непрерывные.

Дискретной случайной величиной называется такая величина, которая может принимать любое значение из конечного или бесконечного счетного множества значений, т.е. такого множества, элементы которого могут быть занумерованы в каком-нибудь порядке и выписаны в последовательности , , …, , …

 

Непрерывной случайной величиной называется такая величина, которая может принимать любые неизвестные заранее значения из рассматриваемого участка или интервала.

 

Так число будущих министров среди ста выпускников института – дискретная случайная величина с возможными значениями 0, 1, 2, …, 100, а дальность полета пули при выстреле – непрерывная и заранее неизвестная величина от 0 до 1 км.

 

Для задания дискретной случайной величины необходимо перечислить все ее возможные значения и указать вероятности этих значений.

 

Законом распределения (или рядом распределения) дискретной случайной величины называется соответствие между ее возможными значениями и их вероятностями.

 

Закон распределения может задаваться таблицей, формулой или графиком. При табличном задании первая строка таблицы содержит возможные значения, вторая – вероятности этих значений.

X x 1 x 2 xn
P p 1 p 2 pn

В любом законе распределения необходимо перечислять все возможные значения случайной величины, следовательно, события x 1, x 2, …, xn образуют полную группу и

.

Пример. В лотерее выпущено 100 билетов. Разыгрывался один выигрыш в 50 у.е. и десять выигрышей по 1 у.е. Найти закон распределения величины X – стоимости возможного выигрыша.

Возможные значения величины X: x 1 = 0; x 2 = 10 и x 3 = 50. Так как «пустых» билетов – 89, то p 1 = 0,89, вероятность выигрыша 1 у.е. (10 билетов) – p 2 = 0,10 и для выигрыша 50 у.е. – p 3 = 0,01. Таким образом:

X      
P 0,89 0,10 0,01

Легко проконтролировать: .

 

Ряд распределения можно задать графически, если по оси x откладывать значения X, а по оси y – значения P и соединять отрезками полученные точки.

 

Для целого ряда процессов получены аналитические формулы законов распределения. Приведем обзор наиболее распространенных.

Распределение Бернулли (или биномиальное)

 

Пусть в серии n независимых испытаний событие A может появиться или не появиться в каждом испытании. Вероятность появления A равна p, непоявления q = 1– p. Случайной величиной X объявим число появлений события A в этих n испытаниях. Значения величины X: 0, 1, 2, …, n; k – номер испытания: 0, 1, 2, …, n. Тогда закон Бернулли имеет вид:

.

 

Распределение Пуассона

Это распределение используется для определения вероятности того, что при очень большом количестве испытаний (массовые испытания), в каждом из которых вероятность события A очень мала (p  событие A наступит ровно k раз. Закон Бернулли здесь неудобен, используется формула:

, где .

 

Пример. Произведено 5000 патронов. Вероятность того, что какой-то патрон – бракованный . Какова вероятность того, что во всей партии будет ровно 3 негодных патрона?

Здесь n = 5000, p = 0,0002, k = 3. Находим , тогда искомая вероятность: .

 

Геометрическое распределение

Пусть производятся независимые испытания, в каждом из которых событие A имеет вероятность появления p (и непоявления q = 1 – p). Испытания заканчиваются, как только произойдет событие A.

 

При таких условиях вероятность того, что событие A произойдет на k -ом испытании, определяется по формуле:

.

 

Пример. При стрельбе до первого попадания с вероятностью попадания p = 0,6 надо найти вероятность того, что попадание произойдет при третьем выстреле.

Здесь p = 0,6; q = 1 – 0,6 = 0,4; k = 3. Следовательно,

 





Поделиться с друзьями:


Дата добавления: 2015-10-19; Мы поможем в написании ваших работ!; просмотров: 855 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Так просто быть добрым - нужно только представить себя на месте другого человека прежде, чем начать его судить. © Марлен Дитрих
==> читать все изречения...

2463 - | 2219 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.