Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Обратное преобразование




(Слайд 11).

Выполнив прямое преобразование, бывает нужно вернуть объект назад. В общем случае это осуществляют посредством обратной матрицы. Если определитель квадратной матрицы не равен нулю, то такая матрица имеет и обратную ей, причём справедливо

Т ∙ Т־¹ = 1.

Обратная матрица считается по известной формуле

А־¹ = , здесь |А| - определитель матрицы А, число; а матрица преобразования составлена из алгебраических дополнений матрицы А и затем транспонирована.

Для нашего примера матрица обратного преобразования в свёрнутом виде запишется так:

Т־¹ = или

слайд 11 – Обратные аффинные преобразования.

Его содержание:

 

 

6 Что может подвергаться преобразованиям в геометрических моделях?

 

Выделим три опорных момента. Подвергать преобразованиям можно

1. Точки. Они задают геометрическую модель как таковую.

 

2. Направление. Например, надо задать (определить) направление быстро движущегося объекта к точке, находящейся вне поля зрения наблюдателя (за пределом экрана, в большой удалённости от места действия, в ∞-и). На направление влияют только коэффициенты a, b, c и d. Коэффициенты l и m в преобразовании не участвуют, нет точки, которую надо переносить (Слайд 12).

 

3. Нормали. Это векторы направления перпендикулярные некоторому другому заданному направлению Их преобразование в одной и той же системе координат отличается от преобразования вектора, к которому эта нормаль перпендикулярна. Содержание слайда 12 приведено ниже


 

· точка (радиус-вектор) (p):

 

· вектор (v) и нормаль (n)

(только направление, w=0)


 

 

Преобразования точек, векторов и нормалей можно записать так

 

С нормалями всё не так. Это видно из изображения (рис. выше), слайд 12. Базовый объект промасштабирован по оси x в 2 раза и все точки переместились по оси x также в 2 раза. Если это распространить на нормаль, то она станет почти параллельна оси x. А это совсем неверно (на слайде выше показана зелёной стрелкой). В этом частном случае надо нормаль оттянуть назад к оси y. И надо понять – какую матрицу преобразования следует применить к нормали, чтобы выполнить прямое преобразование объекта, сохранив! требуемое направление нормали. На слайде 13 ( ниже приведено его содержание) дан вывод соответствующего преобразования..

Первые три уравнения – есть постановка задачи: а) что известно из теории - скалярное произведение перпендикулярных друг другу векторов равно 0; б) требуется найти матрицу Q преобразования нормали n, если матрица преобразования вектора v – Mtransform известна

 

 

Решение задачи:

 

 

Поясним.

Скалярное произведение двух перпендикулярных векторов равно нулю. И оно должно оставаться таким и после преобразования,т.е.:

n ∙ v = 0 и

n' ∙ v' = 0,

 

Задача состоит в нахождении матрицы преобразования направления нормали, если известна матрица преобразования вектора, к которому эта нормаль перпендикулярна. Известно, что скалярное произведение двух взаимно перпендикулярных векторов равно нулю.

Так как

n' = n ∙ Q transform, а v' = v ∙ M transform,

то (n ∙ Q t ransform ) ∙ (v ∙ MТ transform) = 0

Зададим значения координат для нормали n и вектора v: пусть n = (A, B), а v = (x, y), здесь А и В – координаты вектора нормали; тогда из последней формулы можно составить уравнение, в котором в силу ассоциативности переставлены скобки

 

(A B 0) ∙ (Q transform ∙ MТ tranмsform) ∙ (x y 0)Т = 0.

 

Это уравнение справедливо, а так как Q transform ∙ MТ transform = E = 1, то из него найдём

 

Q transform = (M־¹transform)Т.

 

Таким образом, для преобразования нормали n одновременно с преобразованием вектора v надо применить не прямую матрицу M преобразования, а ей обратную транспонированную.

 

Замечание. Варианты нотации записи. Слайд 14. Матрица – это способ хранения информации и в КГ, в программных продуктах уравнения преобразования записывают как вектор-строка умноженная скалярно на матрицу преобразования.

Математики традиционно используют запись через вектор-столбец. Это надо иметь ввиду. С точки зрения логики КГ удобнее писать формулы преобразования как для вектора-строки. Машине же безразлично как эти матрицы составлены.

Если выполняется одно преобразование, то для вектор-строки соответствует первая запись из приведенных ниже, а для вектора-столбца – вторая.

 

 

Если выполняется композиция преобразований, то соответственно этому записи имеют вид:

Во второй записи последовательность преобразования обратная действительной последовательности.

 

 





Поделиться с друзьями:


Дата добавления: 2015-10-19; Мы поможем в написании ваших работ!; просмотров: 804 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если президенты не могут делать этого со своими женами, они делают это со своими странами © Иосиф Бродский
==> читать все изречения...

2461 - | 2328 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.