Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Математическое описание транспортного потока




Моделирование транспортного потока. При исследованиях и проек­тировании организации движения приходится прибегать к описанию транспортных потоков математическими методами. Первостепенными задачами, послужившими развитию моделирования транспортных по­токов, явились изучение и обоснование пропускной способности до­рог и их пересечений. Поведение транспортного потока очень измен­чиво и зависит от действия многих факторов и их сочетаний. Наряду с техническими факторами (транспортные средства, дорога) решающее влияние на него оказывают поведение людей (водителей, пешеходов), а также состояние среды движения.

Основы математического моделирования закономерностей дорож­ного движения были заложены в 1912 г. русским ученым, профессором Г. Д. Дубелиром. Первая попытка обобщить математические исследо­вания транспортных потоков и представить их в виде самостоятельно­го раздела прикладной математики была сделана Ф. Хейтом. Дальней­шие исследования и разработки в этой области нашли отражение в ра­ботах многих зарубежных и отечественных ученых.

Известные и нашедшие практическое применение в организации дорожного движения математические модели можно разделить на две группы в зависимости от подхода: детерминированные и вероятност­ные (стохастические).

К детерминированным относятся модели, в основе которых лежит функциональная зависимость между отдельными показателями, напри­мер, скоростью и дистанцией между автомобилями в потоке. При этом принимается, что все автомобили удалены друг от друга на одинаковое расстояние.

Стохастические модели отличаются большей объективностью. В них транспортный поток рассматривается как вероятностный (случайный) процесс. Например, распределение временных интервалов между ав­томобилями в потоке может приниматься не строго определенным, а случайным.

Детерминированные модели. Простейшей математической моделью, описывающей поток автомобилей, является так называемая упрощен­ная динамическая модель. Ее применяют для определения максималь­но возможной интенсивности движения по одной полосе дороги N a max при скорости v a:

, (2.2)

где А – коэффициент размерности.

При измерении скорости в километрах в час, а динамического габа­рита в метрах формула (2.2) является выражением для определения про­пускной способности полосы

. (2.3)

Данная математическая модель составлена на основании двух уп­рощающих допущений: скорость всех транспортных единиц в потоке одинакова; транспортные средства однотипны, т. е. имеют равные ди­намические габариты. Динамический габарит L а транспортного сред­ства определяют как сумму длины транспортного средства l а, дистан­ции безопасности d и зазора l 0 до остановившегося впереди автомоби­ля. Зазор l о для легковых автомобилей колеблется в пределах 1 – 3 м.

Рассмотрим три применяемых разными авторами подхода к опре­делению динамического габарита L Д

1. При расчете исходя из минимальной теоретической дистанции безопасности принимают абсолютно равными тормозные свойства пары автомобилей и учитывают только время реакции t р ведомого во­дителя. Тогда , а уравнение (2.2) приобретает линейный характер. В этом случае возможная интенсивность транспортного по­тока не имеет предела по мере увеличения скорости. Однако это не со­ответствует реальным характеристикам водителей и приводит к завы­шению возможной интенсивности потока. Здесь главную роль играет практическое значительное увеличение t p при высоких скоростях.

2. При расчете на "полную безопасность" исходят из того, что ди­станция d должна быть равна полному остановочному пути ведомого автомобиля So2. Тогда динамический габарит

,  

В упрощенной формуле не выделен отрезок, проходимый за время нарастания замедления, а учитывается только установившееся замед­ление ja. В этом случае уравнение (2.2) приобретает вид квадратичной функции, а интенсивность имеет предел при определенном значении скорости v a (скорости транспортного потока). Такой подход больше соответствует требованиям обеспечения безопасности движения при высоких скоростях (более 90 км/ч).

3. Наиболее реальный подход основан на той предпосылке, что при расчете дистанции безопасности d надо учитывать разницу тормозных путей (или замедлений) автомобилей, так как "лидер" в процессе тор­можения также перемещается на расстояние, равное своему тормозно­му пути. Более детально это будет рассмотрено в подразделе 2.5.

В результате изучения транспортных потоков высокой плотности и специальных экспериментов, проведенных американскими специали­стами, была предложена теория "следования за лидером", математи­ческим выражением которой является микроскопическая модель транс­портного потока. Микроскопической ее называют потому, что она рас­сматривает элемент потока – пару следующих друг за другом автомо­билей. Особенностью этой модели является то, что в ней отражены за­кономерности комплекса ВАДС и, в частности, психологический ас­пект управления автомобилями. Он заключается в том, что при движе­нии в плотном транспортном потоке действия водителя обусловлены изменениями скорости лидирующего (ведущего) автомобиля и дистан­ции до него в данный момент.

Экспериментальная проверка основного уравнения осуществлялась несколькими учеными методом натурного имитационного эксперимен­та с помощью двух автомобилей, оборудованных аппаратурой для из­мерения значений параметров уравнения. Дистанцию между автомо­билями определяли киносъемкой или специальной амортизирующей лебедкой, которая связывала оба автомобиля. Однако такой экспери­мент уже в своей постановке содержит известную искусственность, ис­кажающую реальный процесс. Это заключается, прежде всего, в специ­альном подборе водителей, автомобилей и задании определенного ре­жима движения. Кроме того, относительно малое число замеров не по­зволяет охватить все многообразие ситуаций, возникающих в реальном транспортном потоке. Дорожные условия и общая транспортная ситу­ация рассматриваются в данной модели не в качестве отдельных пара­метров, а как проявляющиеся в значении скорости движения. Уравне­ние теории следования за лидером описывает взаимодействие между автомобилями с учетом реакции водителя на изменения в транспорт­ном потоке, называемые стимулами.

К моделям, рассматривающим поток в целом и называемым макро­скопическими, относят, например, модели гидродинамической теории.

Наиболее известны две из них, основанные на использовании анало­гии в поведении транспортного потока и потока жидкости. Первая ос­нована на уравнении неразрывности, которое обусловливает постоян­ство количества жидкости при ее протекании по водостоку, и в обозна­чениях, принятых для транспортного потока, в результате преобразо­ваний и упрощений характеризуется зависимостью:

,  

где va – скорость, подлежащая экспериментальному определению; qа mах – плотность транспортного потока при заторе (va = 0).

Вторая гидродинамическая модель использует известное из гидрав­лики понятие о потенциале давления жидкости и предполагает, что дви­жение автомобиля выражается в виде функции некоторого потенциала давления, зависящего от дорожных условий, состояния окружающей среды и психофизиологического состояния водителя.

Стохастические модели. Для решения некоторых задач организации дорожного движения необходимо располагать стохастическими харак­теристиками параметров транспортных потоков в зоне пересечений или на других контролируемых участках дорог. Исследованиями установле­но, что для описания потоков сравнительно малой интенсивности, ха­рактеризующей вероятность проезда определенного числа транспорт­ных средств через сечение дороги, применимо уравнение (распределе­ние) Пуассона

, (2.4)

где Pn(t) – вероятность проезда n-го числа автомобилей за время t; λ – основной параметр распределения (интенсивность транспортного потока), авт.с; t – длительность отрезков наблюдения, с; n – число наблюдаемых автомоби­лей.

Практически для целей управления движением более необходимо располагать данными о характере распределения временных интервалов между следующими друг за другом транспортными средствами. Если появление автомобилей характеризуется распределением (2.4), то интер­валы между автомобилями распределены по экспоненциальному закону

,  

где F(t) – плотность распределения

Следует заметить, что в транспортном потоке физически невозмож­но появление интервалов, меньших, чем соответствующие длине ти­пичного транспортного средства (например, 4 – 5 м для потока легко­вых автомобилей). Поэтому более правильным для описания распре­деления временных интервалов оказывается использование модели смещенного экспоненциального закона:

,  

Упомянутые модели совпадают с натурными наблюдениями для однородных потоков, главным образом состоящих из легковых авто­мобилей. При смешанном потоке, а также воздействии некоторых внешних факторов распределение Пуассона не дает удовлетворитель­ных результатов, и в этом случае может быть применено гамма-распре­деление Пирсона III типа или распределение Эрланга.

Движение транспортных средств по дорогам в потоке большой ин­тенсивности и особенно в зоне пересечений может быть рассмотрено на основе теории массового обслуживания. Задачи, решаемые с помо­щью этой теории, обычно сводятся к определению максимального числа "заявок", а также определению очереди в системе по истечении опре­деленного промежутка времени. Применительно к транспортной зада­че это означает возможность определения пропускной способности пересечения, задержек автомобилей и возникающих перед перекрест­ком очередей. Под "заявкой" понимают появление в сечении дороги одного транспортного средства.

При анализе закономерностей дорожного движения, а также при решении практических задач ОДД возникает необходимость исполь­зования взаимозависимостей характеристик транспортного потока. Взаимосвязь интенсивности, скорости и плотности потока на одной по­лосе дороги графически может быть изображена в виде так называемой основной диаграммы транспортного потока (рис. 2.8), отражающей за­висимость

,  

Основная диаграмма отражает изменение состояния однорядного транспортного потока преимущественно легковых автомобилей в за­висимости от увеличения его интенсивности и плотности. Левая часть кривой (показана сплошной линией) отражает устойчивое состояние потока, при котором по мере увеличения плотности транспортный по­ток проходит фазы свободного, затем частично связанного и наконец свя­занного движения, достигая точки максимально возможной интенсивности, т. е. пропускной способности (точка Nmax = Рa на рис. 2.8). В процессе этих изменений скорость потока падает – она характеризует­ся тангенсом угла наклона а радиус-вектора, проведенного от точки 0 к любой точке кривой, характеризующей изменение Na. Соответствую­щие точке Na max = Рa значения плотности и скорости потока считаются оптимальными по пропускной способности (qа опт и va опт). При даль­нейшем росте плотности (за точкой Ра перегиба кривой) поток стано­вится неустойчивым (эта ветвь кривой показана прерывистой линией).

Рис. 2.8. Основная диаграмма транспортного потока: Z – Коэффициент (уровень) загрузки

Переход потока в неустойчивое состояние происходит вследствие несинхронности действий водителей для поддержания дистанции бе­зопасности (действия "торможение–разгон") на любом участке пути и особенно проявляется при неблагоприятных погодных условиях. Все это создает "пульсирующий" (неустойчивый) поток.

Резкое торможение потока (находящегося в режиме, соответствую­щем точке А) и переход его в результате торможений к состоянию по скорости и плотности в соответствующее, например, точке В положе­ние вызывает так называемую "ударную волну" (показана пунктиром АВ), распространяющуюся навстречу направлению потока со скорос­тью, характеризуемой тангенсом угла B. "Ударная волна" является, в частности, источником возникновения попутных цепных столкнове­ний, типичных для плотных транспортных потоков.

В точках 0 и qa max интенсивность движения Na = 0, т. е. соответ­ственно на дороге нет транспортных средств или поток находится в со­стоянии затора (неподвижности).

Радиус-вектор, проведенный из точки 0 в направлении любой точ­ки на кривой (например, А или В), характеризующей Na, определяет значение средней скорости потока .

На графике (см. рис. 2.8) показаны для примера две точки, харак­терные: А – для устойчивого движения транспортного потока; В – для неустойчивого, приближающегося к заторовому состоянию потока. Угол наклона радиус-вектора в первой точке а1 = 60° (tg α= 1,77), а во второй а2 = 15° (tg α = 0,26). Скорость в точке В(~9,9 км/ч) меньше, чем в точке А (~ 67 км/ч), в 6,8 раза.

Необходимо, однако, отметить, что основная диаграмма не может отразить всю сложность процессов, происходящих в транспортном по­токе, и характеризует его надежно лишь при однородном составе и нор­мальном состоянии дороги и внешней среды. При изменении состоя­ния покрытия, условий видимости для водителей, состава потока, вер­тикального и горизонтального профилей дороги изменяется характер диаграммы. Диаграмма транспортного потока может быть построена и в других координатах, например v aq a и N av a.

 

 

 





Поделиться с друзьями:


Дата добавления: 2015-10-06; Мы поможем в написании ваших работ!; просмотров: 1044 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2213 - | 2048 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.