Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Преимущества и издержки непараметрической статистики




Существует определенное соотношение выгод и потерь, связанных с использованием Н. с. к. вместо параметрических. Главным мотивом применения непараметрических методов служит нежелание делать допущения, необходимые для использования параметрических процедур. Дополнительным соображением в пользу выбора Н. с. к. для части исследователей служит присущая нек-рым (хотя далеко не всем!) таким критериям легкость применения и простота вычислений.

Однако с использованием непараметрических критериев связаны определенные неудобства и потери. Прежде всего, проверяемая с помощью непараметрического критерия нулевая гипотеза обычно не яв-ся в точности той же самой нулевой гипотезой, к-рая проверяется при использовании «соотв.» параметрического критерия. Нулевая гипотеза при применении t -критерия для независимых выборок формулируется следующим образом: средние двух генеральных совокупностей равны. Нулевая гипотеза при использовании медианного критерия или критерия Манна-Уитни, к-рые можно было бы применить к тем же данным для определения того, будут ли две группы оценок «значимо различаться между собой», звучит иначе: две генеральные совокупности тождественны. А это предполагает, что выявление значимого различия могло оказаться следствием какого-то неизвестного нам сочетания различий в центральной тенденции, вариабельности и симметрии. Кроме того, непараметрические критерии могут быть нечувствительными к нек-рым видам различий между совокупностями.

Др. слабое место непараметрических критериев заключается в их относительно низкой статистической мощности по сравнению со стандартными параметрическими критериями. Мощность статистического критерия определяется как вероятность отклонения нулевой гипотезы в тех случаях, когда она является ложной. Непараметрические критерии обычно требуют больших объемов выборки, чтобы сравняться по статистической мощности с параметрическими критериями. Когда анализируемые данные более или менее соответствуют допущениям параметрических критериев, следует, по всей вероятности, использовать именно эти критерии.

Простых рецептов в отношении того, в каких ситуациях следует применять именно Н. с. к., не существует. Чтобы сделать оптимальный выбор в конкретной ситуации, исследователь должен знать характеристики анализируемых данных и располагать информ. о доступных параметрических и непараметрических критериях.





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 335 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Бутерброд по-студенчески - кусок черного хлеба, а на него кусок белого. © Неизвестно
==> читать все изречения...

2395 - | 2319 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.