Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Предел числовой последовательности




Пределы и непрерывность

Определение. Если по некоторому закону каждому натуральному числу n поставлено в соответствие определенное число an, то говорят, что задана числовая последовательность { an }:

.

Другими словами, числовая последовательность – это функция натурального аргумента: .

Числа называются членами последовательности, а число an – общим членом данной последовательности.

Примеры: 2,4,6,8,…,2n,…- монотонная, неограниченная.

1,0,1,0,… - немонотонная, ограниченная.

- немонотонная, ограниченная. Рассмотрим эту последовательность подробнее. Изобразим ее члены точками числовой оси.

Можно заметить, что члены последовательности с ростом n сколь угодно близко приближаются к 1. При этом абсолютная величина разности становится все меньше и меньше:

, , , ,…, ,…,

то есть с ростом n величина будет меньше любого сколь угодно малого положительного числа.

Определение. Число А называется пределом числовой последовательности { an }, если для любого сколь угодно малого положительного числа найдется такой номер N (зависящий от e), что для всех членов последовательности с номерами n>N верно неравенство

.

Записывают это следующим образом: или a n ® A при n®¥.

Последовательность, имеющая предел, называется сходящейся, в противном случае - расходящейся.

Геометрический смысл предела числовой последовательности состоит в том, что точки an, начиная с некоторого номера n>N, лежат внутри интервала (A-e, A+e), т.е. попадают в какую угодно малую e-окрестность точки а.

 





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 399 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент всегда отчаянный романтик! Хоть может сдать на двойку романтизм. © Эдуард А. Асадов
==> читать все изречения...

2542 - | 2275 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.